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Introduction

The Steinitz class of a number field extension K/k is an ideal class in the ring
of integers Ok of k, which, together with the degree [K : k] of the extension,
determines the Ok-module structure of OK . More precisely, if I is an ideal
in the Steinitz class of K/k, then

OK ∼= O[K:k]−1
k ⊕ I

as Ok-modules. The Steinitz class of an extension of number fields can easily
be calculated and it is related to the discriminant and hence to the ramifying
primes. An interesting question about Steinitz classes is the following:

Given a number field k and a finite group G, which ideal classes of Ok
are Steinitz classes of a (tamely ramified) G-extension of k?

We will restrict our attention to tamely ramified extensions and call
Rt(k,G) the classes which are Steinitz classes of a tamely ramifiedG-extension
of k. We will say that those classes are realizable for the group G. It is not
difficult to find examples in which Rt(k,G) is neither the whole ideal class
group, nor only the class of principal ideals, so the answer to the above
question is not trivial.

Calculating realizable classes in some easy concrete examples, we always
obtain subgroups of the ideal class group. So we can conjecture that this is
always true:

Conjecture. Rt(k,G) is always a subgroup of the ideal class group of k.

It is not known if the conjecture is true, but there are a lot of cases in
which it has been proved. We summarize some of the most important results
in this direction.

In 1966 Leon McCulloh [17] studied the case in which G = C(n) is cyclic
of order n and k contains a primitive n-th root of unity. Under the above
hypotheses he proved that R(k,G) = Rt(k,G) = Cl(k)d(n) (in R(k,G) we
consider also wild extensions), where d(n) is the greatest common divisor of
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the d(l) for all the prime divisors l of n and d(l) = (l − 1)/2 if l is an odd
prime and d(2) = 1.

In 1971 Robert L. Long [15] was able to remove the hypothesis that some
roots of unity are contained in the number field k, in the case of cyclic groups
of odd prime order. In this case R(k,G) is no more equal to Rt(k,G), but
they continue both to be subgroups of the ideal class group of k. Later,
in [14], he describes explicitly Rt(k,G) for any cyclic group of odd prime
power order, proving in particular that it is a group. Further he refers to
an example in his PhD thesis of a number field and an abelian group G for
which R(k,G) is not a group.

In 1974 Lawrence P. Endo, in his unpublished PhD thesis [9], extended
Long’s results about Rt(k,G) to any abelian group of odd order and he also
studied the case of a cyclic G of 2-power order. In this case he obtained only a
partial solution, since he assumed that the extension of the base field k given
by the adjunction of an appropriate 2-power root of unity is cyclic. Further
he considered semidirect products of a cyclic group of odd prime power order
with another cyclic group, which acts faithfully on the first one. In all these
cases he proved that Rt(k,G) is a group, giving an explicit description of it.

In 1987 Leon McCulloh [18] studied the Galois module structure of the
rings of integers in number fields. It follows from his results that Rt(k,G) is
a subgroup of Cl(k) for any finite abelian group G. However, this result does
not yield an explicit description of Rt(k,G).

In 1996 James E. Carter [5] considered the nonabelian group G of order
p3 and exponent p. He assumed that the base field k includes the p-th roots
of unity, he fixed a cyclic extension E/k of order p and he determined the
realizable classes for tame extensions of k with Galois group G and containing
E. He proved that those classes are (cW (E/k))p

2(p−1)/2, where c(p−1)/2 is the
Steinitz class of E/k and W (k,E) will be defined in 1.2.9. In 1997 in [6] he
proved that if G is a nonabelian group of order p3 = uv and exponent v then
Rt(k,G) = Cl(k)u(p−1)/2 whenever k contains a v-th root of unity ζv.

In 1997 Richard Massy and Bouchäıb Sodäıgui [16] constructed for each
class c of the ideal class group of k a quadratic extension K of k that can be
embedded in a quaternion extension of degree 8 such that the Steinitz class
of K/k is c.

In 1999 Bouchäıb Sodäıgui [22] proved that Rt(k,G) = Cl(k) if G =
C(2)×C(2) and that the same is true if G = C(4) or G = H8, the quaternion
group, provided the class number of k is odd. He also proved that every ideal
class is the Steinitz class of a quadratic (respectively biquadratic with ζ4 ∈ k
or k(ζ4)/k ramifying) tame extension K of k, which can be embedded in
a tame extension N/k with Galois group C(4) (respectively H8). In [23]
he extends this results to the dihedral group D4, proving that if the class
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number of k is odd then Rt(k,D4) = Cl(k).

In 2001 Elena Soverchia [24] considered the case of metacyclic groups G
of order pq, where p and q are odd primes such that p ≡ 1 (mod q). She
proved that Rt(k,G) is a group and found an explicit characterization for it.

In 2002 Marjory Godin and Bouchäıb Sodäıgui [10] proved that Rt(k,A4) =
Cl(k). In 2003 ([11]) they also proved that, if the class number of k is odd,
then Rt(k, S4) = Cl(k).

In 2006 Nigel P. Byott, Cornelius Greither and Bouchäıb Sodäıgui [4] con-
sidered groups of the form G = V oρC, where V is a F2-vector space of dimen-
sion r ≥ 2, C is a cyclic group of order 2r−1 and ρ : C → AutF2(V ) is a faith-
ful representation. They obtained that Rt(k,G) = Rt(k, C)2rCl(k)2r−2(2r−1).

In 2007 James E. Carter and Bouchäıb Sodäıgui [7] studied the case of the
groups of generalized quaternions: H4pr = 〈σ, τ : σ2pr = 1, σp

r
= τ 2, τστ−1 =

σ−1〉, where p is an odd prime and r is a positive integer. They proved that
Rt(k,H4pr) = Cl(k)p

r
W (k,E0)p−1, where W (k,E0) will be defined in 1.2.9,

E0 is the subextension of k(ζpr)/k such that [k(ζpr) : E0] = m0 and m0 = 1
if [k(ζpr) : k] is odd, m0 = 2 else.

In 2008 Clement Bruche and Bouchäıb Sodäıgui [3] carried on the work of
[4]. They considered groups of the form G = V oρC, where V is a Fp-vector
space of dimension r ≥ 1, p is an odd prime, C is a cyclic group of order
pr − 1 and ρ : C → AutFp(V ) is a faithful representation. The result they

proved is that if ζp ∈ k then Rt(k,G) = Rt(k, C)p
r
Cl(k)p

r−1(pr−1)(p−1)/2.

In 2009 Clement Bruche [2] proved that if G is a nonabelian group of
order p3 = uv and exponent v then Rt(k,G) = W (k, p)u(p−1)/2 under the
hypothesis that the extension k(ζv)/k(ζp) is unramified, thereby giving an
unconditional result when G has exponent p.

Most of the results have been obtained with techniques from Kummer
theory. In this thesis, we obtain some already known results and some gener-
alizations of them, with a different kind of proof, based on class field theory.
This method simplifies the proofs, if compared with Kummer theory, since
it permits to construct the desired number fields extensions directly, without
first adjoining roots of unity and then eliminating them again by passing to
suitable subextensions.

In the first chapter we collect some preliminary results about class field
theory and Steinitz classes and we prove some simple propositions.

The second chapter is dedicated to abelian extensions. We describe the
realizable classes of tame abelian extensions of odd degree (obtaining in a
different way the same results as in [9]) and we obtain some information also
in the even case. In particular we show that it is enough to study the case
of cyclic groups of 2-power degree. Further we also prove the conjecture for
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abelian groups whose 2-Sylow subgroup is of the form C(2m1)×· · ·×C(2mr),
where m1 = m2 ≥ m3 ≥ · · · ≥ mr and C(n) is cyclic of order n.

The most interesting results are contained in chapter 3, in which we
study nonabelian extensions. We define A′-groups inductively, starting by
abelian groups and then considering semidirect products of A′-groups with
abelian groups of relatively prime order and direct products of two A′-groups.
The main result of chapter 3 is that the conjecture about realizable Steinitz
classes for tame extensions is true for A′-groups of odd order. We conclude
the chapter considering some more groups which can be studied using the
same techniques.
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Chapter 1

Preliminary results

In this chapter we recall some general results related to class field theory and
to Steinitz classes.

Let k be a number field, i.e. a finite extension of Q, let Ok be its ring
of integers and Uk be its group of units. A prime (or a place) p of k is a
class of equivalent valuations of k. We distinguish between the finite and the
infinite primes, writing p -∞ or p|∞, respectively. The finite primes belong
to the prime ideals of k, for which we use the same notation p. The infinite
primes correspond to the real embeddings or to a pair of conjugate complex
embeddings. For the finite primes we consider the valuation vp, normalized
by vp(k

∗) = Z.

We also define the absolute value | · |p in the following way.

1. If p - ∞ and qp is the cardinality of the residue class field κp = Ok/p,

then |a|p = q
−vp(a)
p for a ∈ k∗.

2. If p is real infinite and ι : k → R is the corresponding embedding then
|a|p = |ιa| for a ∈ k.

3. If p is complex infinite and if ι : k → C is one of the associated
embeddings then |a|p = |ιa|2 for a ∈ k.

For each prime we consider the completion kp of k with respect to | · |p.
A local field is a field which is complete with respect to a discrete valuation
with finite residue class field; in particular if p is a finite prime, kp is a local
field.
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Chapter 1. Preliminary results

1.1 Class field theory

We recall some of the most important results of class field theory, referring
mainly to [20].

Theorem 1.1.1. For every finite Galois extension KP/kp of local fields we
have a canonical isomorphism

rKP/kp : Gal(KP/kp)
ab → k∗p/NKP/kpK

∗
P.

The inverse of rKP/kp yields the local norm residue symbol

( , KP/kp) : k∗p → Gal(KP/kp)
ab

with kernel NKP/kpK
∗
P.

Proof. This is Theorem III.2.1 in [20].

Theorem 1.1.2. If KP/kp is a finite abelian extension of local fields, then
the norm residue symbol

( , KP/kp) : k∗p → Gal(KP/kp)

maps the group Up on the the inertia group of KP/kp.
If KP/kp is tame, then ( , KP/kp) is trivial on 1 + p ⊆ Up.

Proof. This is a particular case of Theorem III.8.10 in [20]. For the triviality
of ( , KP/kp) on 1 + p in the tame case we use Proposition III.8.2 of [20].

We set

Up =

{
group of units of kp if p -∞
k∗p if p|∞.

Let S be a finite set of primes of the field k. The group

ISK =
∏
p∈S

k∗p ×
∏
p6∈S

Up ⊆
∏

p

k∗p

is called the group of S-ideles of k. The union

Ik =
⋃
S

ISk ⊆
∏

p

k∗p ,

where S runs through all the finite sets of primes of k, is called the idele
group of k. If x ∈ k∗, then (x) ∈ Ik is the idele whose p-th component is
x ∈ k∗p and we may regard k∗ as embedded in this way in Ik and thus consider
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k∗ to be a subgroup of Ik. The ideles from k∗ are known as principal ideles
of k. The factor group

Ck = Ik/k
∗

is called the idele class group of k.
We define a cycle of k as a formal product

m =
∏

p

pnp

of prime powers, such that np ≥ 0 and np = 0 for almost all p; for the real
infinite primes we admit only the exponents np = 0 and 1, for the complex
ones only 0. We set

U
np
p =


Up if np = 0

1 + pnp ⊆ Up if p -∞ and np > 0

R+ ⊆ k∗p if p is real and np = 1

and we consider the groups

Im
k =

∏
p

U
np
p .

The quotient
Cm
k = Im

k · k∗/k∗ ⊆ Ck

is called the congruence subgroup mod m of Ck.
The following theorem proves the existence of some abelian extensions of

a number field, corresponding to particular subgroups of Ck.

Theorem 1.1.3 (existence theorem). The map

K 7→ NK/k = NK/kCK

is a 1-1 correspondence between the finite abelian extensions K/k and the
subgroups of Ck containing a congruence subgroup Cm

k . Moreover

K1 ⊆ K2 ⇐⇒ NK1/k ⊇ NK2/k,

NK1·K2/k = NK1/k ∩NK2/k, NK1∩K2/k = NK1/k · NK2/k,

i.e. the correspondence is an anti-isomorphism of lattices. If K/k is associ-
ated to the subgroup N of Ck, then K is called the class field of N . The class
field km/k of the congruence subgroup Cm

k is called the ray class field mod m.
The ray class field mod 1 is also called the Hilbert class field of k.
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Proof. All this follows immediately by Theorem IV.7.1 and IV.7.3 of [20].

Let K/k be an abelian extension of number fields. The conductor f of
K/k is the g.c.d. of all cycles m such that K ⊆ km, where km is the ray class
field mod m. By Theorem 1.1.3, kf is the smallest ray class field containing
K.

Proposition 1.1.4. Let K/k be an abelian extension of number fields. A
prime p of k is ramified in K if and only if p|f.

In particular the Hilbert class field k1/k is the maximal unramified abelian
extension of k.

Proof. See Corollary IV.7.6 in [20].

Theorem 1.1.5. Let m be a natural number, p∞ the infinite prime of Q and
let m be the cycle m = m · p∞. Then the ray class field mod m of Q is the
field

Qm = Q(ζm),

where ζm is a primitive m-th root of unity.

Proof. This is Theorem IV.7.7 in [20].

Now we state a global version of Theorem 1.1.1.

Theorem 1.1.6. For every finite Galois extension K/k of number fields we
have a canonical isomorphism

rK/k : Gal(K/k)ab → Ck/NK/kCK .

The inverse of rK/k yields the surjective homomorphism

( , K/k) : Ck → Gal(K/k)ab

with kernel NK/kCK, the global norm residue symbol.

Proof. This is Theorem IV.6.5 in [20].

For every prime p we have the canonical injection

[ ] : k∗p → Ck,

which associates to ap ∈ k∗p the class of the idele

[ap] = (. . . , 1, 1, 1, ap, 1, 1, 1, . . . ).

The following proposition shows the compatibility of local and global class
field theory.
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1.1. Class field theory

Proposition 1.1.7. If K/k is an abelian extension and p a prime of k, then
the diagram

k∗p
( ,KP/kp)

//

[ ]

��

Gal(KP/kp)

��
Ck

( ,K/k) // Gal(K/k)

is commutative.

Proof. This is Proposition IV.6.6 in [20].

Theorem 1.1.8. Let G be an abelian group. Every surjective homomorphism
ϕ : Ck → G whose kernel contains a congruence subgroup Cm

k is the norm
residue symbol of a unique extension K/k with Galois group isomorphic to
G and ϕ([Up]) is its inertia group for the prime p. In particular

ep(K/k) = #ϕ([Up])

and if the primes dividing the order of G do not divide m, then the extension
is tame.

Proof. By Theorem 1.1.3 there exists a unique abelian extension K/k with
NK/kCK = kerϕ. By Theorem 1.1.6 the global residue symbol of K/k gives
an isomorphism Ck/ kerϕ = Ck/NK/kCK → Gal(K/k)ab = Gal(K/k) and
thus clearly Gal(K/k) ∼= G. Now let K1 and K2 be two fields corresponding
to the same residue symbol, then NK1/kCK1 = NK2/kCK2 and so, by Theorem
1.1.3, K1 = K2.

The group ϕ([Up]) is the inertia group for the prime p because of Theorem
1.1.2 and Proposition 1.1.7.

Proposition 1.1.9. Let K/k and K ′/k′ be finite Galois extensions such that
k ⊆ k′ and K ⊆ K ′ and let δ ∈ Gal(Q̄/Q). We then have the commutative
diagrams

Ck′
( ,K′/k′) //

Nk′/k

��

Gal(K ′/k′)ab

��
Ck

( ,K/k) // Gal(K/k)ab

Ck
( ,K/k) //

δ

��

Gal(K/k)ab

δ∗
��

Ckδ
( ,Kδ/kδ) // Gal(Kδ/kδ)ab

where the right arrow in the second diagram is induced by the conjugation
σ 7→ δσδ−1.

Proof. These are particular cases of Proposition II.3.3 in [20].

15



Chapter 1. Preliminary results

Let L/K and K/k be an abelian and a Galois extension of number fields
respectively, such that L/k is normal, U = Gal(L/K) and ∆ = Gal(K/k).
Let δ ∈ ∆ and let δ̃, δ̃′ ∈ Gal(L/k) be two extensions of δ to Gal(L/k). Then
δ̃′−1δ̃ ∈ U and, by the commutativity of U , we have that

δ̃∗σ = δ̃σδ̃−1 = δ̃′δ̃′−1δ̃σδ̃−1δ̃′δ̃′−1 = δ̃′σδ̃′−1 = δ̃′∗σ,

so that we can define δ∗ : U → U by δ∗ = δ̃∗.

Corollary 1.1.10. The residue symbol ( , L/K) : CK → U associated to the
extension L/K is ∆-invariant, i.e. for each δ ∈ ∆ the following diagram is
commutative.

CK
( ,L/K) //

δ
��

U
δ∗

��
CK

( ,L/K) // U .
Proof. This follows immediately by Proposition 1.1.9.

Proposition 1.1.11. Let K/k be a finite tame extension with Galois group
∆, let U be a finite abelian group and let φ : ∆→ Aut(U) be an action of ∆
on U . Then for a ∆-invariant surjective homomorphism ϕ : CK → U , whose
kernel contains a congruence subgroup Cm

K, the extension L/K constructed
as in Theorem 1.1.8 is Galois over k. The following sequence is exact

1→ U → Gal(L/k)→ ∆→ 1

and the induced action of ∆ on U is the given one.

Proof. Let K̃ be the maximal abelian extension of K; by standard arguments
K̃/k is Galois. Since K̃ ⊃ L, there is a normal closure L1 of L/k in K̃ and
the extension L1/K is finite and abelian. Let π : Gal(L1/K) → Gal(L/K)
be the projection, then L is the fixed field of ker π. By Proposition 1.1.9

π = ( , L/K) ◦ rL1/K = ϕ ◦ rL1/K

and for δ ∈ Gal(L1/k) we have, using also the hypothesis of ∆-invariance,

δ∗ ◦ π = δ∗ ◦ ϕ ◦ rL1/K = ϕ ◦ δ ◦ rL1/K = ϕ ◦ rL1/K ◦ δ∗ = π ◦ δ∗.

Thus
δ∗ kerπ = ker(π ◦ δ−1

∗ ) = ker(δ−1
∗ ◦ π) = ker π.

So kerπ is normal in Gal(L1/k). It follows that L/k is Galois. The exactness
of the sequence is obvious and the statement about the action of ∆ on U
follows from Proposition 1.1.9, since the given action is the only one for
which the diagram on the right commutes.
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1.2. Ideal-theoretic formulation of class field theory

1.2 Ideal-theoretic formulation of class field

theory

Class field theory has also an ideal-theoretic formulation.
Let k be a number field and let m =

∏
p pnp be a cycle of k. We denote

by Jm
k the group of all ideals prime to m and by Pm

k the group of all principal
ideals generated by an element a ≡ 1 (mod pnp) for all p|m. The group
Jm
k /P

m
k is called the ray class group mod m. The ray class group mod 1 is

the usual ideal class group Cl(k) = Jk/Pk, where Jk = J1
k and Pk = P 1

k .

Proposition 1.2.1. The homomorphism

π : Ik → Jk, α 7→
∏
p-∞

pvp(αp)

induces an isomorphism

πm : Ck/C
m
k → Jm

k /P
m
k .

Proof. This is Proposition IV.8.1 in [20].

Let K be an abelian extension of k, contained in the ray class field mod
m; the cycle m is called a cycle of declaration for K/k. We define(

K/k

a

)
=
∏

p

([πp], K/k)νp ,

where a =
∏

p pνp ∈ Jm
k and πp is a prime element in kp. By Proposition

1.1.4, every prime ideal p - m is unramified in K and hence by Theorem 1.1.2
and Proposition 1.1.7 the above expression does not depend on the choice of
the πp. It is called the Artin symbol.

Proposition 1.2.2. Let K/k and K ′/k′ be finite Galois extensions, with
cycles of declaration m and m′, such that k ⊆ k′ and K ⊆ K ′ Then we have
the commutative diagram

Jm′

k′

(
K′/k′
·

)
//

Nk′/k
��

Gal(K ′/k′)ab

��
Jm
k

(K/k· )
// Gal(K/k)ab

.
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Proof. Let a =
∏

p pνp ∈ Jm′

k′ and let πp be a prime element in k′p, then(
K ′/k′

a

)∣∣∣∣
K

=
∏

p

([πp], K
′/k′)νp |K =

∏
p

(Nk′/k([πp]), K/k)νp

=
∏

p

(
K/k

Nk′/k(p)

)νp

=

(
K/k

Nk′/k(a)

)
,

where we used Proposition 1.1.9.

Theorem 1.2.3. Let K/k be an abelian extension and let m be a cycle of
declaration of K/k. Then the Artin symbol induces a surjective homomor-
phism (

K/k

·

)
: Jm

k /P
m
k → Gal(K/k)

with kernel Hm
K/k/P

m
k , where Hm

K/k = NK/kJ
m
K · Pm

k .
Moreover we have an exact commutative diagram

1 // NK/kCK //

πm

��

Ck
( ,K/k) //

πm

��

Gal(K/k) //

id
��

1

1 // Hm
K/k/P

m
k

// Jm
k /P

m
k

(K/k· )
// Gal(K/k) // 1

Proof. This is Theorem IV.8.2 in [20].

Corollary 1.2.4. Let K,K1, K2 be finite abelian extensions of a number field
k and let m be a cycle of declaration for them. Then

πm : NK/k/Cm
k → Hm

K/k/P
m
k

is an isomorphism, and

K1 ⊆ K2 ⇐⇒ Hm
K1/k

⊇ Hm
K2/k

,

Hm
K1·K2/k

= Hm
K1/k
∩Hm

K2/k
, Hm

K1∩K2/k
= Hm

K1/k
·Hm

K2/k
.

Proof. By Proposition 1.2.1, πm : Ck → Jm
k /P

m
k is surjective and thus by the

exact commutative diagram in the above theorem, we obtain that πm(NK/k) =
Hm
K/k/P

m
k . By Theorem 1.1.3, NK/k ⊇ Cm

k (m is a cycle of declaration of K/k)

and then by Proposition 1.2.1 it is the kernel of πm : NK/k → Hm
K/k/P

m
k .

Now the result follows by Theorem 1.1.3 and by the fact that Hm
K/k is the

counterimage of Hm
K/k/P

m
k by the projection Jm

k → Jm
k /P

m
k .
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Corollary 1.2.5. Let km be the ray class field modulo a cycle m of a number
field k. Then (

km/k

·

)
: Jm

k /P
m
k → Gal(km/k)

is an isomorphism.

Proof. By definition of the ray class field mod m, Nkm/k = Cm
k and thus by

Corollary 1.2.4 we obtain that Hm
km/k/P

m
k is the trivial group. We conclude

using Theorem 1.2.3.

Theorem 1.2.6. Let K/k be an abelian extension of degree n and let p be an
unramified prime ideal. Let m be a cycle of declaration of K/k not divisible
by p and let Hm

K/k be the corresponding ideal group.

If f is the order of p mod Hm
K/k in the ideal class group Jm

k /H
m
K/k, i.e.

the smallest positive number such that

pf ∈ Hm
K/k,

then p splits in K into a product

p = P1 . . .Pr

of r = n
f

different prime ideals P1, . . . ,Pr of degree f over p.

Proof. This is Theorem IV.8.4 in [20].

Theorem 1.2.7 (Chebotarev). Let K/k be a finite abelian extension and
let σ ∈ Gal(K/k). Then there exist infinitely many prime ideals p in k,

unramified in K, of absolute degree 1 and with σ =
(
K/k

p

)
.

Proof. This follows by Theorem V.6.4 in [20] and the observation that the
Dirichlet density of a subset of the primes of k depends only on the prime
ideals of the first degree (page 130 of [20]). Further we use also the fact that
the Dirichlet density can be positive only if the cardinality of the considered
set is infinite (again, see page 130 of [20]).

Proposition 1.2.8. Let m be a cycle for a number field k. Then each class
in the ray class group modulo m contains infinitely many prime ideals of
absolute degree 1.

Proof. By Corollary 1.2.5,(
km/k

·

)
: Jm

k /P
m
k → Gal(km/k)
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is an isomorphism, where km is the ray class field modulo m. Thus for each ray
class we can consider the corresponding automorphisms σ ∈ Gal(km/k) and,
by Theorem 1.2.7, there exist infinitely many prime ideals p in k, unramified

in km, of absolute degree 1 and with σ =
(
km/k

p

)
. By construction they must

be in the given ray class.

Definition 1.2.9. Let K/k be a finite abelian extension of number fields and
let m be a cycle of declaration of K/k. We define

W (k,K) = NK/kJ
m
K · Pk/Pk = Hm

K/k · Pk/Pk.

If ζm is an m-th root of unity we use the notation W (k,m) = W (k, k(ζm)).

Proposition 1.2.10. By class field theory W (k,K) corresponds to the max-
imal unramified subextension of K/k, i.e.

W (k,K) = H1
K∩k1/k/Pk,

where k1 is the Hilbert class field of k. In particular W (k,K) does not depend
on the choice of the cycle of declaration m of K/k.

Proof. By Theorem 1.2.3 and by Corollary 1.2.5 the kernel of(
k1/k

·

)
: Jm

k /P
m
k → Gal(k1/k)

is Hm
k1/k/P

m
k = (Pk ∩ Jm

k )/Pm
k ; so we have Hm

k1/k = Pk ∩ Jm
k and, by Corollary

1.2.4,
Hm
K∩k1/k = Hm

K/k ·Hm
k1/k = Hm

K/k · (Pk ∩ Jm
k ).

Let x ∈ H1
K∩k1/k/Pk, then by Proposition 1.2.8 there exists a prime p - m

in the class of x, and, recalling also the definition of Hm
K∩k1/k,

p ∈ H1
K∩k1/k ∩ Jm

k = Hm
K∩k1/k · (Pk ∩ Jm

k ) = Hm
K/k · (Pk ∩ Jm

k ),

i.e. x ∈ Hm
K/k · Pk/Pk. Thus

H1
K∩k1/k/Pk ⊆ Hm

K/k · Pk/Pk = Hm
K∩k1/k · Pk/Pk

and the opposite inclusion is trivial.
Thus we have proved that

W (k,K) = Hm
K/k · Pk/Pk = H1

K∩k1/k/Pk.
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Corollary 1.2.11. Let K1, K2/k be abelian extensions of number fields, then

K1 ⊆ K2 ⇐⇒ W (k,K1) ⊇ W (k,K2),

W (k,K1)W (k,K2) = W (k,K1∩K2), W (k,K1)∩W (k,K2) ⊇ W (k,K1K2).

Proof. By Proposition 1.2.10 and Corollary 1.2.4:

K1 ⊆ K2 ⇐⇒ W (k,K1) = H1
K1∩k1/k/Pk ⊇ H1

K2∩k1/k/Pk = W (k,K2),

W (k,K1)W (k,K2) = H1
K1∩k1/kH

1
K2∩k1/k/Pk

= H1
K1∩K2∩k1/k/Pk = W (k,K1 ∩K2),

W (k,K1) ∩W (k,K2) = (H1
K1∩k1/k ∩H1

K2∩k1/k)/Pk = H1
(K1∩k1)(K2∩k1)/k/Pk

⊇ H1
K1K2∩k1/k/Pk = W (k,K1K2).

The following result is similar to the characterizations of W (k,K) given
in [9].

Proposition 1.2.12. Let K/k be a finite abelian extension of number fields.
Then the following subsets of the class group of k are equal to W (k,K):

W1 = {x ∈ Jk/Pk : x contains infinitely many primes of absolute degree 1

splitting completely in K},
W2 = {x ∈ Jk/Pk : x contains a prime splitting completely in K},
W3 = NK/k(JK) · Pk/Pk.

Proof. Let x ∈ W (k,K) and let m be a cycle of declaration of K/k. By defi-
nition x = a ·Pk, where a ∈ Hm

K/k. By Proposition 1.2.8 there exist infinitely
many primes of absolute degree 1 in the ray class modulo m containing a;
let p be one of them, which does not ramify in K/k. Then p = a · (b),
where (b) ∈ Pm

k , and thus p ∈ Hm
K/k and by Theorem 1.2.6 we can con-

clude that p splits completely in K. Thus x ∈ W1 and we have proved that
W (k,K) ⊆ W1.

Obviously W1 ⊆ W2.
Let x ∈ W2 and p be a prime in x which splits completely in K. Then

for any prime divisor P of p in K, NK/k(P) = p. Thus x = NK/k(P) ·Pk and
hence W2 ⊆ W3.

Recalling Proposition 1.2.10 we obtain that

NK/k(JK) · Pk/Pk ⊆ NK∩k1/k(JK∩k1) · Pk/Pk = H1
K∩k1/k/Pk = W (k,K).
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In the case of cyclotomic extensions we obtain some further important
results.

Lemma 1.2.13. Let p be a prime in k of absolute degree 1, splitting com-
pletely in k(ζm). Then Nk/Q(p) ∈ Pm

Q , where m = m · p∞.

Proof. By hypothesisOk/p is the finite field with p elements, where Nk/Q(p) =
(p), and (Ok/p)∗ contains a primitive m-th root of unity, i.e. an element of
order m. Hence m must divide |Ok/p| − 1 = p − 1, i.e. p ≡ 1 (mod m),
which is equivalent to the assertion.

Lemma 1.2.14. Let k be a number field, let m = m · p∞, with m ∈ N, and
let a ∈ Jm

k be such that Nk/Q(a) ∈ Pm
Q , then a ∈ Hm

k(ζm)/k, i.e. the class of a

is in W (k,m).

Proof. By Proposition 1.2.2,(
k(ζm)/k

a

)∣∣∣∣
Q(ζm)

=

(
Q(ζm)/Q
Nk/Q(a)

)
= 1.

Of course also the restriction of
(
k(ζm)/k

a

)
to k is trivial; thus we have proved

that (
k(ζm)/k

a

)
= 1,

i.e. that a ∈ Hm
k(ζm)/k.

Lemma 1.2.15. Let K/k be a tamely ramified abelian extension of number
fields and let p be a prime ideal in k whose ramification index in K/k is
e, then Nk/Q(p) ∈ Pm

Q , where m = e · p∞. In particular, by Lemma 1.2.14,
p ∈ Hm

k(ζe)/k
and so its class is in W (k, e).

Proof. This is Lemma I.2.1 of [9].

Proposition 1.2.16. Let k be a number field and let m = m·p∞, with m ∈ N.
Then the following subsets of the class group of k are equal to W (k,m):

W4 = {x ∈ Jk/Pk : x contains infinitely many primes p of degree 1 with

Nk/Q(p) ∈ Pm
Q },

W5 = {x ∈ Jk/Pk : x contains an ideal a prime to m with Nk/Q(a) ∈ Pm
Q }.

Proof. Let x ∈ W (k,m). By Proposition 1.2.12 there exist infinitely many
prime ideals of absolute degree 1 splitting completely in k(ζm). By Lemma
1.2.13 we conclude that W (k,m) ⊆ W4.

By Lemma 1.2.14 we know that W4 ⊆ W5 ⊆ W (k,m).
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1.3. Steinitz classes

In the following we will also consider rational powers of some W (k,K).
They are defined as follows

W (k,K)1/b = {x ∈ Cl(k) : xb ∈ W (k,K)}

and, if a and b are coprime,

W (k,K)a/b =
(
W (k,K)1/b

)a
.

Lemma 1.2.17. Let m,n, x be integers. If x ≡ 1 (mod m) and any prime
q dividing n divides also m then

xn ≡ 1 (mod mn).

Proof. Let n = q1 . . . qr be the prime decomposition of n (qi and qj with i 6= j
are allowed to be equal). We prove by induction on r that xn ≡ 1 (mod mn).
If r = 1, then mn = mq1 must divide mq1 and there exists b ∈ N such that

xn = (1 + bm)q1 = 1 +

q1−1∑
i=1

(
q1

i

)
(bm)i + (bm)q1 ≡ 1 (mod mn).

Let us assume that the lemma is true for r−1 and prove it for r. Since qr|m,
as above, for some c ∈ N we have

xn = (1 + cmq1 . . . qr−1)qr = 1 +

qr∑
i=1

(
qr
i

)
(cmq1 . . . qr−1)i ≡ 1 (mod mn).

Lemma 1.2.18. If q|n⇒ q|m then W (k,m)n ⊆ W (k,mn).

Proof. Let x ∈ W (k,m). According to Proposition 1.2.16, x contains a prime
ideal p, prime to mn and such that Nk/Q(p) ∈ Pm

Q , where m = m · p∞. Then
by Lemma 1.2.17, Nk/Q(pn) ∈ P n

Q, with n = mn · p∞, and it follows from
Proposition 1.2.16 that xn ∈ W (k,mn).

1.3 Steinitz classes

In this section we recall the definition and some properties of Steinitz classes.

Theorem 1.3.1. Let R be a Dedekind domain, let M be a finitely generated
R-module and let A be the submodule of M consisting of all torsion elements
of M , i.e. of the elements x ∈ M which, for some nonzero r ∈ R, satisfy
rx = 0. Then M can be written as a direct sum

M ∼= Rn ⊕ I ⊕ A,

where n is a natural number and I is some ideal of R.
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Chapter 1. Preliminary results

Proof. This is Theorem 1.13 in [19].

Theorem 1.3.2. Let R be a Dedekind domain and let

M1 = I1 ⊕ · · · ⊕ Im, M2 = J1 ⊕ · · · ⊕ Jn,

be finitely generated torsion-free R-modules, where Ii, Ji are nonzero frac-
tional ideals of R. Then M1 and M2 are isomorphic if and only if m = n
and, with a suitable a ∈ K, the field of quotients of R, the equality

I1 · · · Im = aJ1 · · · Jn
holds. Equivalently I1 · · · Im ∼= J1 · · · Jn as R-modules.

Proof. This is Theorem 1.14 in [19].

Definition 1.3.3. Let K/k be an extension of number fields and let OK and
Ok be their rings of integers. By Theorem 1.3.1 we know that

OK ∼= On−1
k ⊕ I,

where n = [K : k] and I is an ideal of Ok. By Theorem 1.3.2 the Ok-module
structure of OK is determined by n and the ideal class of I. This class is
called the Steinitz class of K/k.

We are going to study the realizable classes for a number field k and a
finite group G.

Definition 1.3.4. Let k be a number field and G a finite group, then we
define

Rt(k,G) = {x ∈ Cl(k) : ∃K/k tame, Gal(K/k) ∼= G, st(K/k) = x}.

In general it is not known if Rt(k,G) is a subgroup of the ideal class
group.

Let K/k be a finite extension of number fields and let w1, . . . , w[K:k] be
[K : k] elements of K. We define the discriminant

dK/k(w1, . . . , w[K:k]) = det(σiwj)
2

to be the square of the determinant taken with σi ranging over the [K : k]
distinct embeddings of K in a given algebraic closure of k.

If I is an ideal of OK , we denote by dK/k(I) the ideal of Ok generated
by all the dK/k(w1, . . . , w[K:k]), as {w1, . . . , w[K:k]} ranges over the bases of K
over k such that wi ∈ I and we call this the discriminant of the ideal. In
particular we can associate to an extension of number fields the discriminant
of the trivial ideal in OK and call it the discriminant of the extension:

d(K/k) = dK/k(1).
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1.3. Steinitz classes

Theorem 1.3.5. If K/k is a finite tame Galois extension then

d(K/k) =
∏

p

p
(ep−1)

[K:k]
ep ,

where ep is the ramification index of p.

Proof. This follows by Propositions 8 and 14 of chapter III of [12].

Theorem 1.3.6. Assume K is a finite Galois extension of a number field k.

(a) If its Galois group either has odd order or has a noncyclic 2-Sylow
subgroup then d(K/k) is the square of an ideal and this ideal represents
the Steinitz class of the extension.

(b) If its Galois group is of even order with a cyclic 2-Sylow subgroup and
α is any element of k whose square root generates the quadratic subex-
tension of K/k then d(K/k)/α is the square of a fractional ideal and
this ideal represents the Steinitz class of the extension.

Proof. This is a corollary of Theorem I.1.1 in [9]. In particular it is shown in
[9] that in case (b) K/k does have exactly one quadratic subextension.

Proposition 1.3.7. Suppose K/E and E/k are number fields extensions.
Then

st(K/k) = st(E/k)[K:E]NE/k(st(K/E)).

Proof. This is Proposition I.1.2 in [9].

Lemma 1.3.8. Let K1, K2 be two arithmetically disjoint1 abelian extensions
of a number field k, whose Galois groups are isomorphic to a given group G.
Then there exists an extension K of k, contained in K1K2, with Gal(K/k) ∼=
G and st(K/k) = st(K1/k)st(K2/k). Furthermore the discriminant of K1K2

over K is equal to 1.
If we fix isomorphisms G ∼= Gal(K1/k) and G ∼= Gal(K2/k), then a

field K with the above properties is constructed by considering the fixed field
of the image of the diagonal embedding of G in Gal(K1/k) × Gal(K2/k) ∼=
Gal(K1K2/k).

Proof. This is the Multiplication Lemma on page 22 in [9].

We conclude this section with a general result about tame Galois exten-
sions.

1This means that K1 ∩K2 = k and (d(K1/k),d(K2/k)) = 1.
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Proposition 1.3.9. The inertia group IP of a prime P in a tame Galois
extension L of a number field K is cyclic.

Proof. We can assume that P is totally ramified in L/K, by substituting K
with the fixed field of IP. Localizing at P we obtain a totally ramified tame
Galois extension of local fields LP/Kp. By Proposition 1 in chapter I.8 of [1]
LP = Kp(c

1/e) with c, ζe ∈ Kp. Hence IP = Gal(LP/Kp) is cyclic.
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Abelian extensions

In this chapter we study the realizable classes in the case of abelian ex-
tensions. We start proving some general results, which easily lead to the
description of realizable classes in the odd case (this result was first obtained
by Endo in his PhD thesis [9]). In the second section we study cyclic ex-
tensions of 2-power degree, but we do not obtain a general characterization
of Steinitz classes. The most interesting results of this chapter are those
contained in the last section, in which we prove that a description of the re-
alizable classes in the cyclic case of 2-power degree would lead to a solution
of our problem for any abelian extension of even degree.

2.1 General results

In this section we prove some general results about Steinitz classes of abelian
extensions of number fields and we obtain a characterization of the realizable
Steinitz classes in the case of abelian groups of odd order. This result has
already been proved in a different way in [9]. More precisely, let k be a
number field and G an abelian group of order m; we are going to study
Rt(k,G). We start introducing some notations about k and G.

We denote the class group of k by Cl(k) = C(h1) × · · · × C(ht), which
is a product of cyclic groups of orders h1, . . . , ht, generated by x1 . . . , xt.
Choosing prime ideals p1, . . . , pt of degree 1 contained in the ideal classes
x1, . . . , xt (they exist because of Proposition 1.2.8), we know that phii = (αi)
are principal ideals. Let πpi be prime elements in kpi and let yi = [πpi ] =
(. . . , 1, 1, πpi , 1, 1, . . . ) ∈ Ik, then we define

ai =
1

αi
yhii ∈

∏
p

Up.
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Chapter 2. Abelian extensions

Let {u1, . . . , us} be the union of a system of generators of the abelian group
Uk with {a1, . . . , at}.

For any p let gp be a fixed generator of κ∗p = Up/U
1
p ; then for each a ∈∏

p Up and for any prime p we choose h̃p,a ∈ Z such that g
h̃p,a
p ≡ ap (mod p).

Let G = C(m1) × · · · × C(mr) be the decomposition of G into cyclic
groups with generators τ1, . . . , τr and orders mi+1|mi (sometimes it will be
useful to consider mi = 1 for i > r). If n is an integer and S is a set of
primes, we will use the notation n(S) to indicate the product for l ∈ S of the
l-components of n and, for simplicity, we will also write n(l) = n({l}). The
letter l will always indicate a prime, even if not explicitly mentioned.

Then we also define

η =

{
1 if 2 - m or m2(2) 6= 1

2 if 2|m and m2(2) = 1.

Lemma 2.1.1. A group homomorphism ϕ0 : (
∏

p Up)/Uk → G can be ex-

tended to ϕ : Ck → G if and only if for j = 1, . . . , t, ϕ0(aj) = g
hj
j with

gj ∈ G. We can request also that ϕ(yj) = gj.

Proof. (⇒) We have

ϕ0(aj) = ϕ(y
hj
j ) = ϕ(yj)

hj ∈ Ghj .

(⇐) Let us define

Bk =

((∏
p

Up

)
/Uk × 〈e1, . . . , et〉

)
/{ehjj /aj|j = 1, . . . , t},

where the second component in the direct product is a free abelian group.
We may extend the inclusion i : (

∏
p Up)/Uk ↪→ Ck to Bk by ej 7→ yj and

thus also the map π ◦ i : (
∏

p Up)/Uk → Cl(k) by ej 7→ xj. We obtain the
following commutative diagram

1 //
(∏

p Up

)
/Uk //

id
��

Bk
//

��

Cl(k)

id

��

// 1

1 //
(∏

p Up

)
/Uk // Ck // Cl(k) // 1

where the horizontal sequences are exact. It follows that Bk
∼= Ck. Now we

define ϕ̃ : Bk → G by ϕ̃(a) = ϕ0(a) for a ∈ (
∏

p Up)/Uk and ϕ̃(ej) = gj. This
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is a good definition since

ϕ̃

(
e
hj
j

aj

)
=

g
hj
j

ϕ0(aj)
= 1.

By the isomorphism between Bk and Ck we obtain the requested ϕ : Ck → G.

Since the restriction of the isomorphism Bk
∼= Ck to

(∏
p Up

)
/Uk is the

identity map, it is clear that ϕ is an extension of ϕ0.

Lemma 2.1.2. Let x be any class in W (k,m1). Then there exist G-Galois
extensions of k, whose Steinitz classes are ηα-th powers of x, where

α =
r∑
i=1

mi − 1

2

m

mi

+
m1 − 1

2

m

m1

.

In particular 1 ∈ Rt(k,G), since 1 ∈ W (k,m1).
We can choose these extensions so that they are unramified at all infinite

primes, that the discriminants are prime to a given ideal I of Ok and that
all their proper subextensions are ramified.

Proof. By Proposition 1.2.16 there are infinitely many prime ideals q, for
which Nk/Q(q) ∈ Pm1

Q , where m1 = m1 · p∞, and whose ideal class is x. For
those primes the order of κ∗q is a multiple of m1 and so for any a ∈

∏
p Up the

class hq,a of h̃q,a modulo m1 is well defined. The set of all the possible s-tuples
(hq,u1 , . . . , hq,us) is finite and so it follows from the pigeonhole principle that
there are infinitely many q corresponding to the same s-tuple.

Let q1, . . . , qr+1 be r+ 1 such prime ideals. We can assume that they are
prime to a fixed ideal I and to m.

Let us define ϕ0 :
∏

p κ
∗
p → G, posing

ϕ0(gqi) = τi for i = 1, . . . , r

ϕ0(gqr+1) = (τ1 . . . τr)
−1

ϕ0(gp) = 1 for p 6∈ {q1, . . . , qr+1}.

This is well defined since the order of gqi is a multiple of m1 and hence
of the order of τi. By construction ϕ0(uj) = 1 for j = 1, . . . , s and so in
particular ϕ0 is trivial on Uk and on the a1, . . . , at. This means that ϕ0 is well
defined on (

∏
p Up)/Uk and that ϕ0(aj) = 1. Then it follows from Lemma

2.1.1 that ϕ0 can be extended to ϕ : Ck → G; the kernel of ϕ0 contains
Im
k , where m =

∏r+1
i=1 qi, and so Cm

k ⊆ kerϕ. By Theorem 1.1.8 there is a
G-Galois extension of k, ramifying only in q1, . . . , qr+1, with indices mi for
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i ∈ {1, . . . , r} and m1 for i = r + 1. By Theorem 1.3.5 the corresponding
discriminant is

d =

(
r∏
i=1

q
(mi−1) m

mi
i

)
q

(m1−1) m
m1

r+1 .

If 2 - m or m2(2) 6= 1 then by Theorem 1.3.6 the Steinitz class is xα, where

α =
r∑
i=1

mi − 1

2

m

mi

+
m1 − 1

2

m

m1

.

It is immediate to verify that the additional conditions are verified.
If 2|m and m2(2) = 1 we obtain extensions whose Steinitz classes have

x2α as their square. We may construct infinitely many such extensions which
are arithmetically disjoint and whose discriminants are relatively prime and
so, by the pigeonhole principle, there are two of them with the same Steinitz
class. Then the conclusion follows by Lemma 1.3.8.

Lemma 2.1.3. Let l be a prime dividing the order m of G and let x be any
class in W (k,m1(l)). There exist G-Galois extensions of k, whose Steinitz
classes are ηαl,j-th powers of x, where:

(a) αl,1 = (l − 1)
m

l
,

(b) αl,2 = (m1(l)− 1)
m

m1(l)
,

(c) αl,3 =
3(l − 1)

2

m

l
(only if l 6= 2).

Further there exist G-Galois extensions of k whose Steinitz classes have x2αl,j

as their square. We can choose these extensions so that they satisfy the
additional conditions of Lemma 2.1.2.

Proof. By Lemma 2.1.2 there exists a tame G-Galois extension K/k with
trivial Steinitz class and such that it is unramified at all infinite primes, that
its discriminant is prime to a given ideal I ofOk and that all its subextensions
are ramified.

As in Lemma 2.1.2 there are infinitely many prime ideals q in the class
of x such that the order of κ∗q is a multiple of m1(l). Then the class hq,a

of h̃q,a modulo m1(l) is again well defined and there are infinitely many q

corresponding to the same s-tuple (hq,u1 , . . . , hq,us).
Let q1, q2, q3 be 3 such prime ideals and let us assume that they are all

distinct and that they are prime to a fixed ideal I, to m and to d(K/k).
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(a) Let us define ϕ0 :
∏

p κ
∗
p → G, posing

ϕ0(gq1) = τ
m1/l
1

ϕ0(gq2) = τ
−m1/l
1

ϕ0(gp) = 1 for p 6∈ {q1, q2}.

As in the previous lemma we can extend ϕ0 to a homomorphism

ϕ : Ck → G

whose kernel contains Cm
k , where m = q1q2q3f and f is the conductor of

K/k. Of course
ϕ · ( , K/k) : Ck → G

is surjective and its kernel contains Cm
k . Thus we obtain a G-Galois

extension of k, ramifying only in q1 and q2 with both indices l and in
the primes ramifying in K/k with the same ramification indices as in
K/k. Hence the extension is tame and the discriminant is

d(K/k)(q1q2)(l−1)m
l .

As in Lemma 2.1.2 we can conclude that the class xηαl,1 is realizable.
Further there exist G-Galois extensions of k whose Steinitz classes have
x2αl,1 as their square.

(b) Now let us define ϕ0 :
∏

p κ
∗
p → G, posing

ϕ0(gq1) = τ
m1/m1(l)
1

ϕ0(gq2) = τ
−m1/m1(l)
1

ϕ0(gp) = 1 for p 6∈ {q1, q2}.

In this case we obtain a tame G-Galois extension of k with discriminant

d(K/k)(q1q2)
(m1(l)−1) m

m1(l)

and as usually we can conclude that the class xηαl,2 is realizable and
that x2αl,2 ∈ Rt(k,G)2.

(c) We define ϕ0 :
∏

p κ
∗
p → G, posing

ϕ0(gq1) = τ
m1/l
1

ϕ0(gq2) = τ
m1/l
1

ϕ0(gq3) = τ
−2m1/l
1

ϕ0(gp) = 1 for p 6∈ {q1, q2, q3}.
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Chapter 2. Abelian extensions

Then we have a tame G-Galois extension of k, whose discriminant is

d(K/k)(q1q2q3)(l−1)m
l

and again we obtain the desired results.

The additional conditions of Lemma 2.1.2 are also verified.

Lemma 2.1.4. Let k be a number field, let G be an abelian group of order
m, G2 be its 2-Sylow subgroup and G̃ such that G = G2 × G̃. Then

Rt(k, G̃)m(2) ⊆ Rt(k,G).

Proof. Let x ∈ Rt(k, G̃) and let K̃/k be a G̃-extension of k with Steinitz
class x, which is the class of

d(K̃/k)
1
2 .

Let K/k be a G2-extension of k with trivial Steinitz class and arithmetically
disjoint from K̃/k (it exists because of Lemma 2.1.2). The Steinitz class of
K/k is the class of (

d(K/k)

α

) 1
2

for a certain α ∈ k. Then the extension KK̃/k has Galois group G = G2× G̃
and its Steinitz class is the class of(

d(KK̃/k)

α
m
m(2)

) 1
2

= d(K̃/k)
m(2)

2

(
d(K/k)

α

) m
2m(2)

which is xm(2).

Proposition 2.1.5. Let l 6= 2 be a prime dividing m, then

W (k,m1(l))
l−1
2

m
m1(l) ⊆ Rt(k,G).

If 2|m then

W (k,m1(2))
η m
m1(2) ⊆ Rt(k,G)

and

W (k,m1(2))
2 m
m1(2) ⊆ Rt(k,G)2.

We can choose the corresponding extensions so that they satisfy the additional
conditions of Lemma 2.1.2.
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Proof. Let G2 be the 2-Sylow subgroup of G and G̃ be such that G = G2×G̃.
Let l 6= 2 be a prime dividing m and let x ∈ W (k,m1(l)). It follows from
Lemma 1.3.8 and Lemma 2.1.3 that xβl is in Rt(k, G̃), where

βl = gcd

(
(l − 1)

m

m(2)l
, (m1(l)− 1)

m

m(2)m1(l)
,
3(l − 1)

2

m

m(2)l

)
= gcd

(
(m1(l)− 1)

m

m(2)m1(l)
,
l − 1

2

m

m(2)l

)
.

Clearly βl(l) = m(l)
m1(l)

and, if S is the set of all primes different from l, βl(S)

divides l−1
2

m(S)
m(2)

. Thus βl divides l−1
2

m
m(2)m1(l)

and we conclude that

x
l−1
2

m
m(2)m1(l) ∈ Rt(k, G̃).

Hence by Lemma 2.1.4

x
l−1
2

m
m1(l) ∈ Rt(k,G).

Now let us assume that 2|m and let x ∈ W (k,m1(2)). It follows from
Lemma 1.3.8 and Lemma 2.1.3 that xηβ2 is in Rt(k,G) and x2β2 is in Rt(k,G)2,
where

β2 = gcd

(
m

2
, (m1(2)− 1)

m

m1(2)

)
.

As above we obtain

x
η m
m1(2) ∈ Rt(k,G1)

and

x
2 m
m1(2) ∈ Rt(k,G1)2.

To conclude we observe that Lemma 1.3.8 preserves the additional conditions
of Lemma 2.1.2.

Lemma 2.1.6. For any e|m the greatest common divisor, for l|e, of the
integers (l − 1) m

e(l)
divides (e− 1)m

e
.

Proof. First of all it is clear that we can assume that m = e.

Let I be the Z-ideal generated by the l−1, for any prime l|e. Then e ≡ 1
(mod I), since it is the product of prime factors, each one congruent to 1
modulo I. It follows that for any prime l - e, there exists an l1|e, such that
the l-component of l1 − 1, which coincides with that of (l1 − 1) e

e(l1)
, divides

that of e− 1. Finally, for any l|e, l does not divide (l − 1) e
e(l)

.
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Proposition 2.1.7. Let k be a number field and let G be an abelian group,
then

Rt(k,G) ⊆
∏
l|m

W (k,m1(l))
l−1
2

m
m1(l) .

Proof. Let K/k be a tamely ramified extension of number fields with Galois
group G. By Theorem 1.3.5 and by Lemma 2.1.6 there exist bep,l ∈ Z such
that

d(K/k) =
∏
ep 6=1

p
(ep−1) m

ep =
∏
ep 6=1

∏
l|ep

p
bep,l(l−1) m

ep(l) =
∏
l|m

∏
ep(l) 6=1

p
bep,l(l−1) m

ep(l) .

Since K/k is tame, the ramification index ep of a prime p in K/k divides m1.
Thus, defining

Jl =
∏

ep(l)6=1

p
bep,l

m1(l)
ep(l) ,

we obtain

d(K/k) =
∏
l|m

J
(l−1) m

m1(l)

l

and by Lemma 1.2.15 and Lemma 1.2.18 the class of the ideal Jl belongs to
W (k,m1(l)). We easily conclude by Theorem 1.3.6.

The characterization of the realizable Steinitz classes of abelian extensions
of odd order follows easily from the results proved in this section.

Theorem 2.1.8. Let k be a number field and let G = C(m1)× · · · × C(mr)
with mi+1|mi be an abelian group of odd order. Then

Rt(k,G) =
∏
l|m

W (k,m1(l))
l−1
2

m
m1(l) .

Proof. This follows from Lemma 1.3.8, Proposition 2.1.5 and Proposition
2.1.7.

2.2 Cyclic extensions of 2-power degree

In this section we recall some results concerning cyclic extensions of 2-power
degree, obtained by Lawrence P. Endo in his PhD thesis [9]. Unfortunately
Endo could not determine the corresponding realizable classes in the most
general case and it does not seem possible to obtain any interesting result
with the techniques from class field theory developed in the preceding section.

The following proposition is the only result we can prove by class field
theory.
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2.2. Cyclic extensions of 2-power degree

Proposition 2.2.1. Let k be a number field with an odd class number and
let G = C(2n) = 〈σ〉. Then

Rt(k,G) = W (k, 2n).

Proof. By Proposition 2.1.5 and Proposition 2.1.7

W (k, 2n)2 ⊆ Rt(k, C(2n)) ⊆ W (k, 2n)1/2.

Since the class number is odd,

W (k, 2n) = W (k, 2n)2 = W (k, 2n)1/2,

and this concludes the proof.

We recall the following well-known lemma.

Lemma 2.2.2. Let k be a number field and let α ∈ Ok be such that α ≡ 1
(mod 4Ok). Then the extension k(

√
α)/k is tame.

Proof. By an easy calculation,
√
α+1
2

is an integer, so it is in Ok(
√
α). Now

dk(
√
α)/k

(〈
1,

√
α + 1

2

〉)
= (α)

and so
d(k(
√
α)/k)|(α).

In particular it follows that 2 - d(k(
√
α)/k), i.e. 2 does not ramify in k(

√
α)/k

and so the extension is tame.

Proposition 2.2.3. Let k be any number field, then

Rt(k, C(2)) = Cl(k).

We can choose C(2)-extensions with a given Steinitz class so that they satisfy
the additional conditions of Lemma 2.1.2.

Proof. Let x ∈ Cl(k) be any ideal class and let q1 and q2 be prime ideals in
it, which are in the same ray class modulo 4. Thanks to Proposition 1.2.8,
we can choose a prime ideal q0 in the ray class modulo 4, which is inverse to
that of q1 and q2.

By construction, q2
0q1q2 is principal generated by an α ≡ 1 (mod 4). It

follows from Theorem 1.3.6 that

D =
d(k(
√
α)/k)

α
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is the square of a fractional ideal and by Lemma 2.2.2 the extension k(
√
α)/k

is tame. In particular all the primes dividing d(k(
√
α)/k) appear with expo-

nent 1 in its factorization. Then, since (α) = q2
0q1q2, the only possibility for

D to be a square, is that it equals q−2
0 . Then, again by Theorem 1.3.6, the

Steinitz class of k(
√
α)/k is x.

In the next section we will use the following proposition proved by Endo.

Proposition 2.2.4. For any number field k

W (k, 2n) ⊆ Rt(k, C(2n)).

Proof. This is Proposition II.2.4 in [9].

Further Endo proved the following result, which determines the realizable
classes if the extension k(ζ2n)/k is cyclic.

Proposition 2.2.5. Suppose Gal(k(ζ2n)/k) is cyclic. Then

Rt(k, C(2n)) = W (k, 2n)

unless k(ζ2n)/k is unramified and Gal(k(ζ2n)/k) = 〈−52t〉, 0 ≤ t ≤ n− 2, in
which case

Rt(k, C(2n)) = W (k, 2n)
1
2 .

Proof. This is Proposition II.2.6 in [9].

From the above result James E. Carter and Bouchäıb Sodäıgui in [7] de-
duced the following proposition, which they used to study generalized quater-
nions extensions.

Proposition 2.2.6. Let k be a number field and C(4) the cyclic group of
order 4. Then Rt(k, C(4)) = Cl(k). Further, for any x ∈ Cl(k) and any
ideal I in Ok, there exists a tame cyclic extension K/k of degree 4 such that
st(K/k) = x, whose discriminant is prime to I and such that any nontrivial
subextension of K/k is ramified.

Proof. It is Proposition 2.6 of [7].
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2.3. Abelian extensions of even degree

2.3 Abelian extensions of even degree

In this section we relate the realizable Steinitz classes of abelian extensions
of even degree to those of cyclic extensions of order a power of 2. In this way
we also obtain some definitive results in a few particular situations.

Lemma 2.3.1. If 2|m and m2(2) 6= 1 then

W (k,m2(2))
m

2m2(2) ⊆ Rt(k,G).

We can choose the corresponding extensions so that they satisfy the additional
conditions of Lemma 2.1.2.

Proof. By Lemma 2.1.2 there exists a tame G-Galois extension K/k with
trivial Steinitz class and such that it is unramified at all infinite primes, that
its discriminant is prime to a given ideal I ofOk and that all its subextensions
are ramified. We can choose three prime ideals q1, q2, q3 whose ideal class is
a fixed x ∈ W (k,m2(2)) and which satisfy analogous conditions as in Lemma
2.1.3.

Now let us define ϕ0 :
∏

p κ
∗
p → G, posing

ϕ0(gq1) = τ
m1/m2(2)
1

ϕ0(gq2) = τ
m2/m2(2)
2

ϕ0(gq3) = τ
−m1/m2(2)
1 τ

−m2/m2(2)
2

ϕ0(gp) = 1 for p 6∈ {q1, q2, q3}.

As in Lemma 2.1.3 we obtain a tame G-Galois extension of k with dis-
criminant

d = d(K/k)(q1q2q3)
(m2(2)−1) m

m2(2)

and the Steinitz class is xα2,4 , where

α2,4 = 3(m2(2)− 1)
m

2m2(2)
.

By Proposition 2.1.5,

x
m

m2(2) = x
m1(2)
m2(2)

m
m1(2) ∈ Rt(k,G),

since xm1(2)/m2(2) ∈ W (k,m1(2)) by Lemma 1.2.18. Thus

x
m

2m2(2) = x
gcd

(
α2,4,

m
m2(2)

)
∈ Rt(k,G).
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Using this lemma we can easily prove a first interesting proposition, which
gives a characterization of realizable classes in a particular situation.

Proposition 2.3.2. Let k be a number field, let G = C(m1)× · · · × C(mr),
with mi+1|mi, be an abelian group of order m. If 2|m and m1(2) = m2(2),
then

Rt(k,G) =
∏
l|m

W (k,m1(l))
l−1
2

m
m1(l) .

The result is the same as in the odd order case (see Theorem 2.1.8).
Further we can choose G-extensions with a given Steinitz class so that

they satisfy the additional conditions of Lemma 2.1.2.

Proof. One inclusion is Proposition 2.1.7.
The other inclusion follows by Proposition 2.1.5 and Lemma 2.3.1, using

Lemma 1.3.8.

Lemma 2.3.3. If 2|m then

Rt(k, C(m1(2)))
m

m1(2) ⊆ Rt(k,G).

Proof. By hypothesis G = C(m1(2))× G̃, where G̃ is an abelian group. Let
x ∈ Rt(k, C(m1(2))) and let L be a tame C(m1(2))-extension whose Steinitz
class is x. Because of Lemma 2.1.2 there exists a tame G̃-extension K of k
whose discriminant is prime to that of L over k, with trivial Steinitz class and
with no unramified subextensions. The composition of the two extensions is
a G-extension and its discriminant is

d(L/k)
m

m1(2) d(K/k)m1(2).

If the 2-Sylow subgroup of G is not cyclic then the Steinitz class is the class
of

d(KL/k)
1
2 = d(L/k)

m
2m1(2) d(K/k)m1(2)/2,

that is
(x2)

m
2m1(2) = x

m
m1(2) .

Now we have to consider the case in which the 2-Sylow subgroup ofG is cyclic.
The subextension k(

√
α) of L of degree 2 over k is also a subextension of

KL. We have k(
√
α) = k

(√
α

m
m1(2)

)
(the exponent m

m1(2)
is odd) and so the

Steinitz class of KL/k is the class of the square root of

d(KL/k)

α
m

m1(2)

=

(
d(L/k)

α

) m
m1(2)

d(K/k)m1(2),

that is exactly x
m

m1(2) .
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2.3. Abelian extensions of even degree

Lemma 2.3.4. If 2|m and m2(2) 6= 1 then

Rt(k,G) ⊆ Rt(k, C(m1(2)))
m

m1(2) ·W (k,m2(2))
m

2m2(2) ·
∏
l|m
l 6=2

W (k,m1(l))
l−1
2

m
m1(l) .

Proof. Let K/k be a G-Galois extension whose Steinitz class is x ∈ Rt(k,G)
and let L be a subextension of K/k whose Galois group over k is the first
component of the 2-Sylow subgroup C(m1(2)) × · · · × C(mr(2)) of G. By
Theorem 1.1.8 and Proposition 1.1.9

ep,K = ep,K(2)e′p,K = #([Up], K/k);

ep,L = ep,L(2) = #([Up], L/k) = #([Up], K/k)|L,

where ep,L and ep,K are the ramification indices of p in L and K respectively
and e′p,K is odd. By Theorem 1.3.5 and Theorem 1.3.6, x is the class of∏

p

p
ep,K−1

2
m

ep,K .

The class x1 of the ideal ∏
p

p
ep,L−1

2
m
ep,L

is the m/m1(2)-th power of the Steinitz class of L/k and thus

x1 ∈ Rt(k, C(m1(2)))
m

m1(2) .

Since ep,L|ep,K(2) and 2ep,K(2)|m we can define x2 as the class of

∏
p

p

(
ep,K (2)

ep,L
−1

)
m

2ep,K (2) =
∏

p

p

(
ep,K (2)

ep,L
−1

)
m2(2)
ep,K (2)

m
2m2(2) .

The only primes for which we obtain a nontrivial contribution are those for
which ep,L < ep,K(2) and for those we must have ep,K(2)|m2(2) (since ep,K(2)
must then be the order of a cyclic subgroup of C(m2(2)) × · · · × C(mr(2)))
and thus, recalling Lemma 1.2.15 and Lemma 1.2.18,

x2 ∈ W (k,m2(2))
m

2m2(2) .

Let x3 be the class of

∏
p

p
e′p,K−1

2
m

ep,K =
∏

p

p
ap

e′p,K−1

2
m

e′
p,K

∏
p

p
bp
e′p,K−1

2
m

ep,K (2) ,

39



Chapter 2. Abelian extensions

where ap and bp are integers such that

m

ep,K

= ap
m

e′p,K
+ bp

m

ep,K(2)
.

By Lemma 2.1.6 there exist bp,l ∈ Z such that

∏
p

p
ap

e′p,K−1

2
m

e′
p,K =

∏
l|m
l 6=2

∏
p

p
bp,l

m1(l)

e′
p,K

(l)
l−1
2

m
m1(l)

and thus by Lemma 1.2.15 and Lemma 1.2.18 the class of this ideal is in∏
l|m
l 6=2

W (k,m1(l))
l−1
2

m
m1(l) .

By the same lemmas the class of∏
p

p
bp
e′p,K−1

2
m

ep,K (2)

is in
W (k,m1(2))

m
m1(2) ,

which is contained in
Rt(k, C(m1(2)))

m
m1(2)

by Proposition 2.2.4. Hence

x3 ∈
∏
l|m
l 6=2

W (k,m1(l))
l−1
2

m
m1(l) Rt(k, C(m1(2)))

m
m1(2) .

By an easy calculation

ep,K − 1

2

m

ep,K

=
ep,L − 1

2

m

ep,L

+

(
ep,K(2)

ep,L

− 1

)
m

2ep,K(2)
+
e′p,K − 1

2

m

ep,K

and we conclude that x = x1x2x3, obtaining the desired inclusion.

Theorem 2.3.5. Let k be a number field, let G = C(m1)×· · ·×C(mr), with
mi+1|mi, be an abelian group of order m. If 2|m and m2(2) 6= 1 then

Rt(k,G) = Rt(k, C(m1(2)))
m

m1(2) ·W (k,m1(2))
m

2m2(2) ·
∏
l|m
l 6=2

W (k,m1(l))
l−1
2

m
m1(l) .
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2.3. Abelian extensions of even degree

Proof. ⊆ This is Lemma 2.3.4.

⊇ This follows by Proposition 2.1.5, by Lemma 2.3.1 and by Lemma 2.3.3,
using Lemma 1.3.8.

Remark. The only unknown term in the expression for Rt(k,G) in
the above theorem is Rt(k, C(m1(2))). But we really need to determine only
its square, because it appears with an even exponent. This simplifies the
problem, because this allows us to consider directly the discriminants of the
extensions.

In the second part of the section we consider the case in which the 2-Sylow
subgroup of G is cyclic, i.e. 2|m and m2(2) = 1.

Lemma 2.3.6. If the 2-Sylow subgroup of G is cyclic, i.e. 2|m and m2(2) =
1, then

Rt(k,G) ⊆ Rt(k, C(m1(2)))
m

m1(2) ·
∏
l|m
l 6=2

W (k,m1(l))
l−1
2

m
m1(l) .

Proof. Let K/k be a G-Galois extension whose Steinitz class is x ∈ Rt(k,G)
and let L be the subextension of K/k whose Galois group over k is the
2-Sylow subgroup C(m1(2)) of G. By Theorem 1.1.8 and Proposition 1.1.9

ep,K = ep,K(2)e′p,K = #([Up], K/k);

ep,L = ep,L(2) = #([Up], L/k) = #([Up], K/k)|L,

where ep,L and ep,K are the ramification indices of p in L and K respectively,
e′p,K is odd and ep,K(2) = ep,L(2). Let α ∈ k be such that k ( k(

√
α) ⊆ L.

Since k(
√
α) = k

(√
αm/m1(2)

)
, by Theorem 1.3.5 and Theorem 1.3.6, x

is the class of ∏p p
(ep,K−1) m

ep,K

α
m

m1(2)

 1
2

.

As in the proof of Lemma 2.3.4 we can define

x1 ∈ Rt(k, C(m1(2)))
m

m1(2) ·
∏
l|m
l 6=2

W (k,m1(l))
l−1
2

m
m1(l) .
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as the class of the ideal ∏
p

p
e′p,K−1

2
m

ep,K .

By Theorem 1.3.5 and Theorem 1.3.6,∏p p
(ep,L−1)

m1(2)
ep,L

α


m

2m1(2)

is an ideal, whose class x2 is the m/m1(2)-th power of the Steinitz class of
L/k. Thus

x2 ∈ Rt(k, C(m1(2)))
m

m1(2) .

By an easy calculation∏p p
(ep,K−1) m

ep,K

α
m

m1(2)

 1
2

=
∏

p

p
e′p,K−1

2
m

ep,K

∏p p
(ep,L−1)

m1(2)
ep,L

α


m

2m1(2)

and we conclude that x = x1x2, from which we obtain the desired inclusion.

Theorem 2.3.7. Let k be a number field, let G = C(m1)×· · ·×C(mr), with
mi+1|mi, be an abelian group of order m. If 2|m and m2(2) = 1 then

Rt(k,G) = Rt(k, C(m1(2)))
m

m1(2)

∏
l|m
l 6=2

W (k,m1(l))
l−1
2

m
m1(l) .

Proof. ⊆ This is Lemma 2.3.6.

⊇ This follows by Lemma 2.3.3, Proposition 2.1.5 and Lemma 1.3.8.

We conclude this section with an interesting corollary.

Corollary 2.3.8. Let k be a number field, let G be an abelian group of order
m and let Gl be its l-Sylow subgroup for any prime l|m. Then

Rt(k,G) =
∏
l|m

Rt(k,Gl)
m
m(l) .

Proof. This is immediate by Theorem 2.1.8, Theorem 2.3.5 and Theorem
2.3.7.

In the next chapter we will prove a similar result concerning a relation
between the realizable classes for two groups and for their direct product, in
a quite general situation, which however does not include abelian groups of
even order. Thus the above corollary will not follow from Theorem 3.2.15.
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Nonabelian extensions

In this chapter we will study some nonabelian extensions, with an abelian
normal subgroup. In the first section we obtain some very general results,
which are used in the second section to describe the realizable classes for a
particular class of nonabelian groups of odd order. In the last two sections
we obtain results for the Steinitz classes in some more cases, which have not
been considered in the second section. The theorems proved in this chapter
are the main results of this PhD thesis.

3.1 General results

Let G be a finite group of order m, let H = C(n1)×· · ·×C(nr) be an abelian
group of order n, with generators τ1, . . . , τr and with ni+1|ni. Let

µ : G → Aut(H)

be an action of G on H and let

0→ H
ϕ−→ G

ψ−→ G → 0

be an exact sequence of groups such that the induced action of G on H is
µ. We assume that the group G is determined, up to isomorphism, by the
above exact sequence and by the action µ. We are going to study Rt(k,G).
The following well-known proposition shows a class of situations in which
our assumption is true.

Proposition 3.1.1 (Schur-Zassenhaus, 1937). If the order of H is prime to
the order of G then G is a semidirect product:

G ∼= H oµ G.
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Chapter 3. Nonabelian extensions

Proof. This is Theorem 7.41 in [21].

As in the abelian case we also define

ηG =

{
1 if 2 - n or the 2-Sylow subgroups of G are not cyclic

2 if 2|n and the 2-Sylow subgroups of G are cyclic

and in a similar way we define ηH and ηG. We continue to use the letter l
only for prime numbers, even if not explicitly indicated.

We say that (K, k1, k) is of type µ if k1/k, K/k1 and K/k are Galois
extensions with Galois groups isomorphic to G, H and G respectively and
such that the action of Gal(k1/k) ∼= G on Gal(K/k1) ∼= H is given by µ. For
any G-extension k1 of k we define Rt(k1, k, µ) as the set of those ideal classes
of k1 which are Steinitz classes of a tamely ramified extension K/k1 for which
(K, k1, k) is of type µ.

It will be useful to have a generalization of Lemma 1.3.8.

Lemma 3.1.2. Let (K1, k1, k) and (K2, k1, k) be extensions of type µ, such
that (d(K1/k1), d(K2/k1)) = 1 and K1/k1 and K2/k1 have no nontrivial
unramified subextensions. Then there exists an extension (K, k1, k) of type
µ, such that K ⊆ K1K2 and for which

st(K/k1) = st(K1/k1)st(K2/k1).

Proof. The hypotheses of the lemma imply that K1 and K2 are linearly dis-
joint over k1. Let us fix isomorphisms such that the action of G ∼= Gal(k1/k)
on H ∼= Gal(Ki/k1) given by conjugation coincides with µ. Let us embed H
into Gal(K1K2/k1) by means of the corresponding diagonal map

diag : H → Gal(K1/k1)×Gal(K2/k1) ∼= Gal(K1K2/k1).

Let K be the fixed field of diag(H). Then, by Lemma 1.3.8, we know that
Gal(K/k1) ∼= H and that

st(K/k1) = st(K1/k1)st(K2/k1).

The action of G ∼= Gal(k1/k) on

Gal(K1K2/k1) ∼= Gal(K1/k1)×Gal(K2/k1)

is given by
µ̃(g)((h1, h2)) = (µ(g)(h1), µ(g)(h2)).

It follows that the action of G ∼= Gal(k1/k) on

Gal(K/k1) = Gal(K1K2/k1)/diag(H) ∼= H

(where the last isomorphism is given by the projection on the first compo-
nent) coincides with the action µ. Hence (K, k1, k) is of type µ.
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For any τ ∈ H and for any prime l dividing the order o(τ) of τ we define
the element

τ(l) = τ
o(τ)
o(τ)(l)

in the l-Sylow subgroup H(l) of H.
We now recall some definitions and a classical result.

Definition 3.1.3. Let R be a commutative ring, G a finite group and H a
subgroup of G. The operation of restriction of scalars from R[G] to R[H]
assigns to each left R[G]-module M a left R[H]-module resGH(M), whose un-
derlying abelian group is still M and such that for h ∈ H and m ∈ M , hm
is obtained considering h as an element of G.

Definition 3.1.4. Let R be a commutative ring, G a finite group and H
a subgroup of G. The operation of induction from R[H]-modules to R[G]-
modules assigns to each left R[H]-module L a left R[G]-module indGH(L),
given by

indGH(L) = R[G]⊗R[H] L.

Theorem 3.1.5 (Frobenius reciprocity). Let H be a subgroup of a group G
and let L be a left R[H]-module and M a left R[G]-module. Then there exists
an isomorphism of R-modules

τ : HomR[H](L, resGH(M))→ HomR[G](indGH(L),M).

This isomorphism is such that

(τf)(g ⊗ l) = g · f(l).

Proof. This is Theorem 10.8 in [8]. The explicit description of τ may be
deduced from the proof.

We will only use the above result with R = Z.
Let k1/k be an extension of number fields with Galois group G. Let

P1, . . . ,Pt be prime ideals in Ok1 , unramified over p1, . . . , pt ∈ N, so that the
classes xi of the Pi are generators of Cl(k1) (they exist because of Proposition
1.2.8) and let Phi

i = (αi), where hi is the order of xi.
Let πPi

be a prime element in the completion (k1)Pi
of k1 with respect

to | · |Pi
and let yi = [πPi

] ∈ Ik1 . Then π(yi) = Pi and

ai =
1

αi
yhii ∈

∏
P

UP

is congruent to yhii mod k∗1.
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For any δ ∈ G let bδ,i ∈
∏

P UP and λδ,i,j ∈ Z (they exist thanks to the
exactness of the sequence 1 →

∏
P UP/Uk1 → Ck1 → Cl(k1) → 1) be such

that

δ(yi) = bδ,i

t∏
j=1

y
λδ,i,j
j .

Let {u1, . . . , us} be the union of a system of generators of the abelian
group Uk1 with {a1, . . . , at} and

⋃
δ∈G{bδ,1, . . . , bδ,t}.

Let ι be the map from the class group of k to the class group of k1 which
is induced by the map which pushes up ideals of k to ideals of k1.

Now we can easily generalize some results obtained for abelian extensions.
Lemma 2.1.2, for example, becomes the following.

Lemma 3.1.6. Let k1 be a tame G-extension of k and let x ∈ W (k, k1(ζn1)).
Then there exist tame extensions of k1 of type µ, whose Steinitz classes (over
k1) are ι(x)ηHα, where

α =
r∑
i=1

ni − 1

2

n

ni
+
n1 − 1

2

n

n1

.

In particular there exist tame extensions of k1 of type µ with trivial Steinitz
class. We can choose these extensions so that they satisfy the additional
conditions of Lemma 2.1.2.

Proof. By Proposition 1.2.12, x contains infinitely many primes q of absolute
degree 1 splitting completely in k1(ζn1). Let q be any such prime and let
qOk1 =

∏
δ∈G δ(Q) be its decomposition in k1, let gQ be a generator of κ∗Q =

UQ/U
1
Q. Now δ gives an isomorphism from κ∗Q to κ∗δ(Q) and so we may define

a generator
gδ(Q) = δ(gQ)

of κ∗δ(Q) for any δ ∈ G. We also define generators gP of κ∗P for all the other

prime ideals and for any a ∈
∏

P UP we define h̃P,a ∈ Z, through g
h̃P,a

P ≡ aP

(mod P).
For any prime δ(Q), dividing a prime q of absolute degree 1 splitting

completely in k1(ζn1), let hδ(Q),a be the class of h̃δ(Q),a modulo n1 (since δ(Q)
is of absolute degree 1, it follows by Lemma 1.2.13 that the order of gδ(Q) is
a multiple of n1, i.e. that hδ(Q),a is well defined). The set of all the possible
ms-tuples

(hδ(Q),uj)δ∈G; j=1,...,s

is finite. Then it follows from the pigeonhole principle that there are infinitely
many q corresponding to the same ms-tuple.
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Let q1, . . . , qr+1 be r + 1 such prime ideals and Q1, . . . ,Qr+1 primes of
k1 dividing them. We can assume that they are distinct and that they are
prime to a fixed ideal I and to P1, . . . ,Pt.

Now let us define ϕi : κ∗Qi
→ H, posing

ϕi(gQi
) = τi,

for i = 1, . . . , r, and ϕr+1 : κ∗Qr+1
→ H, posing

ϕr+1(gQr+1) = (τ1 . . . τr)
−1.

Then we extend ϕi to

ϕ̃i : indG〈1〉κ
∗
Qi

∼=
∏
δ∈G

κ∗δ(Qi)
→ H

using Theorem 3.1.5.
Now let us define ϕ0 :

∏
Q κ
∗
Q → H, posing{

ϕ0|κ∗
δ(Qi)

= ϕ̃i for i = 1, . . . , r + 1 and δ ∈ G
ϕ0|κ∗P = 1 for P - q1, . . . , qr+1.

By construction ϕ0 is G-invariant and hence, for any δ ∈ G,

ϕ0

(
r+1∏
i=1

gδ(Qi)

)
= ϕ0

(
δ

(
r+1∏
i=1

gQi

))
= δ∗ϕ0

(
r+1∏
i=1

gQi

)
= δ∗(1) = 1.

It follows that ϕ0(uj) = 1 for j = 1, . . . , s and thus, as in Lemma 2.1.2, we
can extend ϕ0 to a surjective homomorphism ϕ : Ck1 → H, whose kernel
contains a congruence subgroup of Ck1 . We can also assume that ϕ(yj) = 1,
for all j. It follows from Theorem 1.1.8 that there is an H-Galois extension
of k1, ramifying only in the primes above q1, . . . , qr+1, with indices ni for
i ∈ {1, . . . , r} and n1 for j = r + 1.

Further the action of an element of G on one of the yj gives a combination
of some bδ,i and yj, on which ϕ is trivial. Recalling that ϕ0 is G-invariant, it
follows that also the homomorphism ϕ is G-invariant and so, by Proposition
1.1.11 and the assumption that G is identified by the exact sequence

1→ H → G→ G → 1

and by the action µ, we obtain an extension of type µ. Its discriminant is

d =

(
r∏
i=1

q
(ni−1) n

ni
i

)
q

(n1−1) n
n1

r+1 Ok1

and so its Steinitz class has ι(x)2α as its square. We conclude as in Lemma
2.1.2.
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For any τ ∈ H we define

µ̃k,µ,τ : G ×Gal(k(ζo(τ))/k)→ Aut(H)

by µ̃k,µ,τ ((g1, g2)) = µ(g1) for any (g1, g2) ∈ G ×Gal(k(ζo(τ))/k) and

ν̃k,µ,τ : G ×Gal(k(ζo(τ))/k)→ (Z/o(τ)Z)∗

by ν̃k,µ,τ ((g1, g2)) = νk,τ (g2), where g2(ζo(τ)) = ζ
νk,τ (g2)

o(τ) for any (g1, g2) ∈
G ×Gal(k(ζo(τ))/k). Let

G̃k,µ,τ =
{
g ∈ G ×Gal(k(ζo(τ))/k) : µ̃k,µ,τ (g)(τ) = τ ν̃k,µ,τ (g)

}
=
{

(g1, g2) ∈ G ×Gal(k(ζo(τ))/k) : µ(g1)(τ) = τ νk,τ (g2)
}
.

We define

Gk,µ,τ =
{
g ∈ Gal(k(ζo(τ))/k) : ∃g1 ∈ G, (g1, g) ∈ G̃k,µ,τ

}
and Ek,µ,τ as the fixed field of Gk,µ,τ in k(ζo(τ)).

Lemma 3.1.7. For any τ ∈ H, Gk,µ,τ is a subgroup of Gal(k(ζo(τ))/k).

Proof. If (g1, g2), (g̃1, g̃2) ∈ G̃k,µ,τ , then

τ ν̃k,µ,τ ((g1g̃1,g2g̃2)) = τ νk,τ (g2)νk,τ (g̃2) = µ(g1)
(
τ νk,τ (g̃2)

)
= µ(g1)(µ(g̃1)(τ)) = µ̃k,µ,τ ((g1g̃1, g2g̃2))(τ)

and

τ ν̃k,µ,τ((g
−1
1 ,g−1

2 )) = τ νk,τ (g2)−1

= µ
(
g−1

1

) (
µ(g1)

(
τ νk,τ (g2)−1

))
= µ̃k,µ,τ

((
g−1

1 , g−1
2

))
(τ).

Hence (g1g̃1, g2g̃2),
(
g−1

1 , g−1
2

)
∈ G̃k,µ,τ and the set Gk,µ,τ is a subgroup of

Gal(k(ζo(τ))/k).

Given a G-extension k1 of k, there is an injection of Gal(k1(ζo(τ))/k) into
G × Gal(k(ζo(τ))/k) (defined in the obvious way). We will always identify
Gal(k1(ζo(τ))/k) with its image in G × Gal(k(ζo(τ))/k). So we may consider
the subgroup

G̃k1/k,µ,τ = G̃k,µ,τ ∩Gal(k1(ζo(τ))/k)

of G̃k,µ,τ . Let Zk1/k,µ,τ be its fixed field in k1(ζo(τ)).
If k1 ∩ k(ζo(τ)) = k then Gal(k1(ζo(τ))/k) ∼= G ×Gal(k(ζo(τ))/k) and hence

G̃k1/k,µ,τ = G̃k,µ,τ .
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Lemma 3.1.8. For any τ ∈ H, k1Zk1/k,µ,τ = k1(ζo(τ)).

Proof. Let g ∈ Gal(k1(ζo(τ))/k1) ∩ G̃k1/k,µ,τ , then g|k1 = 1, i.e. µ̃k,µ,τ (g)(τ) =
τ , and τ ν̃k,µ,τ (g) = µ̃k,µ,τ (g)(τ) = τ . Thus g(ζo(τ)) = ζo(τ) and we conclude
that g = 1. We have proved that

Gal(k1(ζo(τ))/k1) ∩ G̃k1/k,µ,τ = 1

i.e. that

k1Zk1/k,µ,τ = k1(ζo(τ)).

Lemma 3.1.9. Let τ ∈ H, then

Ek,µ,τ ⊆ Zk1/k,µ,τ ∩ k(ζo(τ))

and we have an equality if k1 ∩ k(ζo(τ)) = k.

Proof. We observe that

Gk,µ,τ ⊇
{
g2 ∈ Gal(k(ζo(τ))/k) : ∃g1 ∈ G, (g1, g2) ∈ G̃k1/k,µ,τ

}
= res

k1(ζo(τ))

k(ζo(τ))
(G̃k1/k,µ,τ )

= res
k1(ζo(τ))

k(ζo(τ))
(G̃k1/k,µ,τ )res

k1(ζo(τ))

k(ζo(τ))
(Gal(k1(ζo(τ))/k(ζo(τ))))

= res
k1(ζo(τ))

k(ζo(τ))
(Gal(k1(ζo(τ))/Zk1/k,µ,τ ∩ k(ζo(τ))))

= Gal(k(ζo(τ))/Zk1/k,µ,τ ∩ k(ζo(τ)))

i.e. that

Ek,µ,τ ⊆ Zk1/k,µ,τ ∩ k(ζo(τ)).

If k1 ∩ k(ζo(τ)) = k then G̃k1/k,µ,τ = G̃k,µ,τ and we have equalities.

Lemma 3.1.10. Let τ ∈ H, then

W (k, Zk1/k,µ,τ ) ⊆ W (k,Ek,µ,τ ).

If k1 ∩ k(ζo(τ(l))) = k and every subextension of k1/k is ramified then

W (k, Zk1/k,µ,τ ) = W (k,Ek,µ,τ ).
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Proof. By Lemma 3.1.9 it is obvious that

W (k, Zk1/k,µ,τ ) ⊆ W (k,Ek,µ,τ ).

Now we assume that k1/k has no unramified subextensions and we prove
that

k1 ∩ k1(ζo(τ)) ⊆ k(ζo(τ)).

If that is not true, then

k(ζo(τ)) ( (k1 ∩ k1(ζo(τ))) · k(ζo(τ)) ⊆ k1(ζo(τ))

and the extension

(k1 ∩ k1(ζo(τ))) · k(ζo(τ))/k(ζo(τ))

is ramified at a prime ramified in k1/k. This prime must ramify also in
k1 ∩ k1(ζo(τ))/k, which is impossible. Therefore if k1 ∩ k(ζo(τ)) = k and k1/k
has no unramified subextensions then, recalling also Lemma 3.1.9,

k1∩Ek,µ,τ = k1∩Zk1/k,µ,τ ∩k(ζo(τ)) = k1∩Zk1/k,µ,τ ∩k1(ζo(τ)) = k1∩Zk1/k,µ,τ

and by Proposition 1.2.10 we conclude that W (k,Ek,µ,τ ) = W (k, Zk1/k,µ,τ ).

Lemma 3.1.11. Let k1 be a G-extension of k, let l be a prime dividing n,
τ ∈ H(l) \ {1} and let x be any class in W (k, Zk1/k,µ,τ ). Then there exist
extensions of k1 of type µ, whose Steinitz classes (over k1) are ι(x)ηHαl,j ,
where:

(a) αl,1 = (l − 1)
n

l
,

(b) αl,2 = (o(τ)− 1)
n

o(τ)
,

(c) αl,3 =
3(l − 1)

2

n

l
(only if l 6= 2).

Further there exist extensions whose Steinitz classes have ι(x)2αl,j as their
square. We can choose these extensions so that they satisfy the additional
conditions of Lemma 2.1.2.
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Proof. By Lemma 3.1.6 there exists an extensionK of k1 of type µ with trivial
Steinitz class and such that K/k1 is unramified at all infinite primes, that its
discriminant is prime to a given ideal I of Ok and that all its subextensions
are ramified.

By Proposition 1.2.12, x contains infinitely many primes q of absolute
degree 1 splitting completely in Zk1/k,µ,τ . Those primes obviously split com-
pletely also in the extension k1(ζo(τ)) = k1Zk1/k,µ,τ (the equality holds by
Lemma 3.1.8) of k1. We can assume that they do not ramify in k1/k, that
they are prime to l and, by the pigeonhole principle, that there are prime
ideals Q in k1, dividing the q, and with a fixed decomposition group D, of
order f , in k1/k; let ρ = m/f . We choose a set ∆ of representatives of the
cosets δD, with δ ∈ G. Then qOk1 =

∏
δ∈∆ δ(Q) are the decompositions of

the primes q in k1.
Let gQ be a generator of κ∗Q = UQ/U

1
Q. Now δ ∈ ∆ gives an isomorphism

from κ∗Q to κ∗δ(Q) and so we may define a generator

gδ(Q) = δ(gQ)

of κ∗δ(Q) for any δ ∈ ∆. We know that any δ ∈ D defines an automorphism
of κ∗Q, of the form

δ(gQ) = g
λQ,δ

Q ,

where λQ,δ is an integer. We can extend δ ∈ D to a δ̃ ∈ Gal(k1(ζo(τ))/k) in a

way such that δ̃(Q̃) = Q̃, where Q̃ is a prime in k1(ζo(τ)) above Q (it is enough
to extend δ in some way and then to multiply it by an appropriate element
of Gal(k1(ζo(τ))/k1)). This element acts as a λQ,δ-th power on κ∗

Q̃
= κ∗Q (the

equality holds because Q splits completely in k1(ζo(τ))). Thus, for δ ∈ D,

ζ
ν̃k,µ,τ (δ̃)

o(τ) = δ̃
(
ζo(τ)

)
≡ ζ

λQ,δ

o(τ) (mod Q̃)

and, recalling that the powers of ζo(τ) are distinct modulo Q̃ (since Q̃ is prime
to l and thus to o(τ)),

λQ,δ ≡ ν̃k,µ,τ (δ̃) (mod o(τ)).

Since the prime q splits completely in Zk1/k,µ,τ and δ̃(Q̃) = Q̃, we obtain that

δ̃ ∈ Gal(k1(ζo(τ))/Zk1/k,µ,τ ) and hence

µ(δ)(τ) = µ̃k,µ,τ (δ̃)(τ) = τ ν̃k,µ,τ (δ̃) = τλQ,δ .

Defining the hδ(Q),uj as in the proof of Lemma 3.1.6, the set of all the
possible ρs-tuples

(hδ(Q),uj)δ∈∆; j=1,...,s
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is finite. Then it follows from the pigeonhole principle that there are infinitely
many q corresponding to the same ρs-tuple.

Let q1, q2, q3 be 3 such prime ideals and let Q1,Q2,Q3 be primes of k1

dividing them. We can assume that they are distinct, that they are prime to
a fixed ideal I and to d(K/k1) and that they satisfy all the above requests.

(a) Now let us define ϕi : κ∗Qi
→ H, for i = 1, 2, posing

ϕ1(gQ1) = τ
o(τ)
l

and

ϕ2(gQ2) = τ−
o(τ)
l .

For δ ∈ D, we have

µ(δ)(ϕ1(gQ1)) = µ(δ)
(
τ
o(τ)
l

)
= τλQ1,δ

o(τ)
l = ϕ1(g

λQ1,δ

Q1
) = ϕ1(δ(gQ1)).

Thus ϕ1 is a D-invariant homomorphism and the same is true for ϕ2.

Then, for i = 1, 2, we extend ϕi to

ϕ̃i : indGDκ
∗
Qi

∼=
∏
δ∈∆

κ∗δ(Qi)
→ H

using Theorem 3.1.5 and we define ϕ0 :
∏

P κ
∗
P → H, posing{

ϕ0|κ∗
δ(Qi)

= ϕ̃i for i = 1, 2 and δ ∈ ∆

ϕ0|κ∗P = 1 for P - q1, q2.

As in Lemma 3.1.6 we can extend ϕ0 to a G-invariant surjective homo-
morphism ϕ : Ck1 → H, whose kernel contains a congruence subgroup
of Ck1 and hence this is true also for

ϕ · ( , K/k1) : Ck1 → H.

We can conclude that there exists an extension of type µ, with discrim-
inant

d(K/k1)
(
(q1q2)(l−1)n

lOk1
)
.

Its Steinitz class has ι(x)2αl,1 as its square and we conclude as in Lemma
2.1.2.
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(b) Now let us define ϕi : κ∗Qi
→ H, for i = 1, 2, posing

ϕ1(gQ1) = τ

and

ϕ2(gQ2) = τ−1.

Exactly as in the first case we obtain an extension of type µ with
discriminant

d(K/k1)
(

(q1q2)(o(τ)−1) n
o(τ)Ok1

)
.

Its Steinitz class has ι(x)2αl,2 as its square and it is easy to conclude as
in (a).

(c) If l 6= 2 we define ϕi : κ∗Qi
→ H, for i = 1, 2, 3, posing

ϕ1(gQ1) = τ
o(τ)
l ,

ϕ2(gQ2) = τ
o(τ)
l ,

and

ϕ3(gQ3) = τ−
2o(τ)
l .

Now we obtain an extension of type µ with discriminant

d(K/k1)
(
(q1q2q3)(l−1)n

lOk1
)
.

Its Steinitz class has ι(x)2αl,3 as its square and we conclude in the usual
way.

Lemma 3.1.11 is now completely proved.

Now we generalize Lemma 2.1.4.

Lemma 3.1.12. Let k1/k be a G-extension of number fields, let H(2) be the
2-Sylow subgroup of H and H̃ such that H = H(2) × H̃. Let µH̃ and µH(2)

the actions of G induced by µ on H̃ and H(2) respectively. Then

Rt(k1, k, µH̃)n(2) ⊆ Rt(k1, k, µ).

Proof. Let x ∈ Rt(k1, k, µH̃) and let (K̃, k1, k) be a µH̃-extension of k1 with
Steinitz class x, which is the class of

d(K̃/k1)
1
2 .
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Let (K, k1, k) be a µH(2)-extension of k1 with trivial Steinitz class and such

that K/k1 and K̃/k1 are arithmetically disjoint (it exists because of Lemma
3.1.6). The Steinitz class of K/k is the class of(

d(K/k1)

α

) 1
2

for a certain α ∈ k1. Then the extension (KK̃, k1, k) is a µ-extension and its
Steinitz class is the class of(

d(KK̃/k)

α
n
n(2)

) 1
2

= d(K̃/k)
n(2)

2

(
d(K/k)

α

) n
2n(2)

which is xn(2).

At this point we can prove a more general version of Proposition 2.1.5.

Proposition 3.1.13. Let l 6= 2 be a prime dividing n and let τ ∈ H(l)\{1},
then

ι
(
W
(
k, Zk1/k,µ,τ

)) l−1
2

n
o(τ) ⊆ Rt(k1, k, µ)

If 2|n then, for any τ ∈ H(2) \ {1},

ι
(
W
(
k, Zk1/k,µ,τ

))ηH n
o(τ) ⊆ Rt(k1, k, µ)

and
ι
(
W
(
k, Zk1/k,µ,τ

))2 n
o(τ) ⊆ Rt(k1, k, µ)2.

We can choose the corresponding extensions so that they satisfy the additional
conditions of Lemma 2.1.2.

Proof. Let H(2) be the 2-Sylow subgroup of H and H̃ be such that H =
H(2) × H̃. Let l 6= 2 be a prime dividing n, let τ ∈ H(l) \ {1} ⊆ H̃ and
let x ∈ W (k, Zk1/k,µ,τ ). It follows from Lemma 3.1.2 and Lemma 3.1.11 that
ι(x)βl is in Rt(k1, k, µH̃), where

βl = gcd

(
(l − 1)

n

n(2)l
, (o(τ)− 1)

n

n(2)o(τ)
,
3(l − 1)

2

n

n(2)l

)
= gcd

(
(o(τ)− 1)

n

n(2)o(τ)
,
l − 1

2

n

n(2)l

)
.

Clearly βl divides l−1
2

n
n(2)o(τ)

and we conclude that

ι(x)
l−1
2

n
n(2)o(τ) ∈ Rt(k1, k, µH̃).
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Hence by Lemma 3.1.12

ι(x)
l−1
2

n
o(τ) ∈ Rt(k1, k, µ).

Now let us assume that 2|n, let τ ∈ H(2)\{1} and let x ∈ W (k, Zk1/k,µ,τ ).
It follows from Lemma 3.1.2 and Lemma 3.1.11 that ι(x)ηHβ2 is in Rt(k1, k, µ)
and ι(x)2β2 is in Rt(k1, k, µ)2, where

β2 = gcd

(
n

2
, (o(τ)− 1)

n

o(τ)

)
.

So we obtain
ι(x)ηH

n
o(τ) ∈ Rt(k1, k, µ)

and
ι(x)2 n

o(τ) ∈ Rt(k1, k, µ)2.

To conclude we observe that Lemma 3.1.2 preserves the additional conditions
of Lemma 2.1.2.

The next proposition is the main result we want to prove in this section.

Proposition 3.1.14. Let k be a number field and let G be a finite group
such that for any class x ∈ Rt(k,G) there exists a tame G-extension k1 with
Steinitz class x and such that every subextension of k1/k is ramified at some
primes which are unramified in k(ζa)/k, where a is a multiple of n1.

Let H = C(n1)× · · · ×C(nr) be an abelian group of order n and let µ be
an action of G on H. We assume that the exact sequence

0→ H
ϕ−→ G

ψ−→ G → 0,

in which the induced action of G on H is µ, determines the group G, up to
isomorphism. Further we assume that H is of odd order or with noncyclic
2-Sylow subgroup, or that G is of odd order. Then

Rt(k,G) ⊇ Rt(k,G)n
∏
l|n
l 6=2

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ)

∏
τ∈H(2)\{1}

W (k,Ek,µ,τ )
ηGmn

o(τ) ,

where Ek,µ,τ is the fixed field of Gk,µ,τ in k(ζo(τ)),

Gk,µ,τ =
{
g ∈ Gal(k(ζo(τ))/k) : ∃g1 ∈ G, µ(g1)(τ) = τ νk,τ (g)

}
and g(ζo(τ)) = ζ

νk,τ (g)

o(τ) for any g ∈ Gal(k(ζo(τ))/k).

Further we can choose tame G-extensions K/k with a given Steinitz class
(of the ones considered above), such that every nontrivial subextension of
K/k is ramified at some primes which are unramified in k(ζa)/k.
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Proof. Let x ∈ Rt(k,G) and let k1 be a tame G-extension of k, with Steinitz
class x, and such that every subextension of k1/k is ramified at some primes
which are unramified in k(ζa)/k. Thus, since a is a multiple of n1, it follows
also that k1 ∩ k(ζn1) = k.

By Lemma 3.1.2, Lemma 3.1.10, Proposition 3.1.13 and Proposition 1.3.7
we obtain

Rt(k,G) ⊇ xn
∏
l|n
l 6=2

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ)

∏
τ∈H(2)\{1}

W (k,Ek,µ,τ )
ηHmn

o(τ) ,

from which we obtain the result we wanted to prove, if ηH = ηG.
With our hypotheses ηH 6= ηG implies that the order of H is odd, i.e. that

there does not exist any nontrivial τ ∈ H(2). Hence we obtain the desired
result also in this case.

We will now generalize Lemma 2.3.1 to the above setting.

Proposition 3.1.15. Let τ, τ̃ ∈ H(2)\{1} be elements such that τ, τ̃ , τ τ̃ are
all of the same order. Let k1 be a G-extension of k. Then

ι(W (k, Zk1/k,µ,τZk1/k,µ,τ̃Zk1/k,µ,τ τ̃ ))
n

2o(τ) ⊆ Rt(k1, k, µ).

In particular, if Zk1/k,µ,τ = Zk1/k,µ,τZk1/k,µ,τ̃Zk1/k,µ,τ τ̃ , the factor1

W (k,Ek,µ,τ )
mn

2o(τ)

can be added in the expression of Proposition 3.1.14, giving more realizable
classes. The additional condition of Proposition 3.1.14 is also satisfied.

Proof. Let
x ∈ W (k, Zk1/k,µ,τZk1/k,µ,τ̃Zk1/k,µ,τ τ̃ ).

We will use all the notations of the proof of Lemma 3.1.11 and we also
consider prime ideals q1, q2, q3 with analogous conditions.

We define ϕi : κ∗Qi
→ H, for i = 1, 2, 3, posing

ϕ1(gQ1) = τ,

ϕ2(gQ2) = τ̃ ,

and
ϕ3(gQ3) = (τ τ̃)−1.

1If the order of τ is 2 or 4 this condition is obviously verified.
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In the usual way we obtain an extension of type µ with discriminant

d(K/k1)
(

(q1q2q3)(o(τ)−1) n
o(τ)Ok1

)
and so its Steinitz class is ι(x)α2,4 (with the above hypotheses the 2-Sylow
subgroup of H can not be cyclic), where

α2,4 = 3(o(τ)− 1)
n

2o(τ)
.

Thus by Lemma 3.1.2 and Lemma 3.1.11 we obtain that

ι(W (k, Zk1/k,µ,τZk1/k,µ,τ̃Zk1/k,µ,τ τ̃ ))
n

2o(τ) ⊆ Rt(k1, k, µ).

To prove that
W (k,Ek,µ,τ )

mn
2o(τ)

can be added in the expression of Proposition 3.1.14, it is now enough to use
Lemma 3.1.10, assuming that k1 ∩ k(ζo(τ)) = k and that every subextension
of k1/k is ramified.

Example. As an example we construct a group of order 168 and we
calculate the Steinitz classes for that group and any number field. We con-
sider the action µ1 : C(3) → Aut(C(7)), sending a generator of C(3) to
the automorphism of C(7) defined as raising everything to the square. We
call G = C(7) oµ1 C(3). Now we define a representation µ2 of G on the
3-dimensional vector space over F2, by sending a generator of C(7) to

M1 =

 1 1 1
1 1 0
1 0 0


and a generator of C(3) to

M2 =

 0 1 1
1 1 0
0 0 1

 .

It is easy to verify that this is well defined and we consider the corresponding
semidirect product:

G = (C(2)×C(2)×C(2))oµ2 G = (C(2)×C(2)×C(2))oµ2 (C(7)oµ1 C(3)).

We want to prove that, for any number field k,

Rt(k,G) = Cl(k)2.
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By Proposition 3.1.14 and Theorem 2.1.8

Rt(k,G) ⊇ W (k, 3)7
∏

τ∈C(7)\{1}

(W (k,Ek,µ1,τ ))
9 ⊇ W (k, 3)7W (k, 7)9

⊇ Cl(k)14Cl(k)54 = Cl(k)2.

If τ is an element of order 2 in the subgroup C(2)× C(2)× C(2) of G, then
Ek,µ2,τ = k. Thus, by Proposition 3.1.15,

Rt(k,G) ⊇ Rt(k,G)8Cl(k)
8

2·221 ⊇ Cl(k)16Cl(k)42 = Cl(k)2.

Conversely, the index of ramification of a prime in a tame G-extension clearly
divides 42, because in a C(2)×C(2)×C(2)-extension the ramification index
is at most 2 (the inertia group must be cyclic by Proposition 1.3.9). Thus
the discriminant of a G-extension must be the 4-th power of an ideal and we
conclude that

Rt(k,G) ⊆ Cl(k)2

and hence we have obtained an equality.

In this section we have only proved one inclusion concerning Rt(k,G).
To prove the opposite one we will need some more restrictive hypotheses.
However the following lemma is true in the most general setting.

Lemma 3.1.16. Let (K, k1, k) be a tame µ-extension, let P be a prime in
k1 ramifying in K/k1 and let p be the corresponding prime in k. Then

x ∈ W (k, Zk1/k,µ,τ ) ⊆ W (k,Ek,µ,τ ) ⊆
⋂
l|eP

W (k,Ek,µ,τ(l)),

where x is the class of p and τ generates ([UP], K/k1).

Proof. Let eP be the ramification index of P in K/k1 and let fp be the
inertia degree of p in k1/k. By Lemma 1.2.15, P ∈ H

eP·p∞
k1(ζeP )/k1

and, since

the extension is tame, P - eP, i.e. P is unramified in k1(ζeP
)/k1. Hence, by

Theorem 1.2.6, P splits completely in k1(ζeP
)/k1. It follows that the inertia

degree of p in k1(ζeP
)/k is exactly the same as in k1/k, i.e. fp.

Let uP ∈ UP be such that its class modulo P is a generator gP of
κ∗P = UP/U

1
P. By Theorem 1.1.2 and Proposition 1.1.7, τ = (gP, K/k1) is an

element of order eP in H. An element δ ∈ Gal(k1(ζeP
)/k) in the decomposi-

tion group of a prime P̃ in k1(ζeP
) dividing P, induces an automorphism of

κ∗P = κ∗
P̃

(the equality holds since P splits completely in k1(ζeP
)/k1), given

by

δ(gP) = g
λP,δ

P ,
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where λP,δ is an integer. Thus ζ
ν̃k,µ,τ (δ)
eP = δ

(
ζeP

)
≡ ζ

λP,δ
eP (mod P̃) and,

recalling that the powers of ζeP
are distinct modulo P̃ (since P̃ - eP), we

deduce that λP,δ ≡ ν̃k,µ,τ (δ) (mod eP). Recalling Proposition 1.1.9,

µ̃k,µ,τ (δ)(τ) = µ(δ|k1)(τ) = (δ(gP), K/k1)

=
(
g
λP,δ

P , K/k1

)
= τλP,δ = τ ν̃k,µ,τ (δ).

Thus δ ∈ G̃k1/k,µ,τ = Gal(k1(ζeP
)/Zk1/k,µ,τ ). Hence we conclude that p has

inertia degree 1 in Zk1/k,µ,τ/k and thus it is the norm of a prime ideal in
Zk1/k,µ,τ , i.e., by Proposition 1.2.12, its class is in W (k, Zk1/k,µ,τ ).

The proof of the inclusions

W (k, Zk1/k,µ,τ ) ⊆ W (k,Ek,µ,τ ) ⊆ W (k,Ek,µ,τ(l))

is trivial, using Lemma 3.1.10 and Corollary 1.2.11.

3.2 A′-groups

We introduce a new kind of groups, which we call A′-groups.

Definition 3.2.1. We define A′-groups inductively:

1. Finite abelian groups are A′-groups.

2. If G is an A′-group and H is finite abelian of order prime to that of G,
then H oµ G is an A′-group, for any action µ of G on H.

3. If G1 and G2 are A′-groups, then G1 × G2 is an A′-group.

Before going forward, we recall the classical definition of an A-group and
we relate it to the above concept of A′-group.

Definition 3.2.2. An A-group is a finite group with the property that all of
its Sylow subgroups are abelian.

Proposition 3.2.3. Every A′-group is a solvable A-group.

Proof. Since abelian groups are obviously solvable A-groups, we have only
to prove that the property of being a solvable A-group is preserved by con-
structions 2 and 3 in Definition 3.2.1.

If G, G1 and G2 are solvable and H is abelian, then H oµ G and G1 × G2

are clearly solvable.
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Chapter 3. Nonabelian extensions

If G is an A-group and H is abelian of order prime to that of G, then for
any prime l dividing the order of H an l-Sylow subgroup of H oµ G must
be a subgroup of H and thus must be abelian. If l divides the order of G
then an l-Sylow subgroup of H oµ G is isomorphic to one of G and thus it is
abelian, by hypothesis. So H oµ G is an A-group.

If G1 and G2 are A-groups, then for any prime l, an l-Sylow subgroup of
G1×G2 is a direct product of l-Sylow subgroups of G1 and G2 and hence it is
abelian, and G1 × G2 is an A-group.

Remark. It is an open question if the converse of the proposition is true
or not.

Example. Thanks to the above proposition we can find finite groups
which are not A′-groups. It is enough to consider any nonabelian l-group.

The next definition is technical; it will be used to make an induction
argument over the order of G possible.

Definition 3.2.4. We will call a finite group G good if the following prop-
erties are verified:

1. For any number field k, Rt(k,G) is a group.

2. For any tame G-extension K/k of number fields there exists an element
αK/k ∈ k such that:

(a) If G is of even order with a cyclic 2-Sylow subgroup, then a square
root of αK/k generates the quadratic subextension of K/k; if G
either has odd order or has a noncyclic 2-Sylow subgroup, then
αK/k = 1.

(b) For any prime p, with ramification index ep in K/k, the ideal class
of (

p
(ep−1) m

ep
−vp(α)

) 1
2

is in Rt(k,G).

3. For any tame G-extension K/k of number fields, for any prime ideal
p of k and any rational prime l dividing its ramification index ep, the
class of the ideal

p
(l−1) m

ep(l)

is in Rt(k,G) and, if 2 divides (l − 1) m
ep(l)

, the class of

p
l−1
2

m
ep(l)
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is in Rt(k,G).

4. G is such that for any number field k, for any class x ∈ Rt(k,G) and
any integer n, there exists a tame G-extension K with Steinitz class x
and such that every nontrivial subextension of K/k is ramified at some
primes which are unramified in k(ζn)/k.

We start with a negative result, showing that the cyclic group of order 8
is not good.

Proposition 3.2.5. The cyclic group C(8) of order 8 is not good.

Proof. Let k = Q(i,
√

10). The field k(ζ8) is obtained extending k with a
root of the polynomial x2 − i, whose roots are ζ8 and ζ5

8 . Hence

Gal(k(ζ8)/k) = 〈5〉

is cyclic of order 2 and it is different from 〈−5〉 and 〈−25〉. We obtain by
Proposition 2.2.5 that

Rt(k, C(8)) = W (k, 8).

With some calculations we can prove that the ring of integers of k(ζ8) is a
principal ideal domain, i.e. that the ideal class group is trivial, while the
ideal class group of k is cyclic of order 2. It follows that W (k, 8) is the trivial
group and, in particular, that the realizable classes form a proper subgroup
of Cl(k).

By Lemma 2.1.2 there exists a tame C(8)-Galois extension K/k with
trivial Steinitz class. Since k(ζ4) = k(i) = k, we have that W (k, 4) =
Cl(k). Hence we can choose two prime ideals q1, q2 whose ideal class is
the nontrivial one of k and which satisfy analogous conditions as in Lemma
2.1.3, substituting m1(l) with 4.

We call τ a generator of the group C(8) and we define ϕ0 :
∏

p κ
∗
p → G,

posing 
ϕ0(gq1) = τ 2

ϕ0(gq2) = τ−2

ϕ0(gp) = 1 for p 6∈ {q1, q2}.
As in Lemma 2.1.3 we use this to obtain a tame C(8)-Galois extension of

k with ramification index equal to 4 in the prime ideals q1 and q2. Since we
have shown above that the class of

q
2−1
2

8
4

1 = q1

is not in Rt(k, C(8)), the third property of good groups is not verified in this
case.
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Now our aim is to show that some groups, such as A′-groups of odd order
are good.

Lemma 3.2.6. Let G be a good group, let H be an abelian group of order
prime to that of G, with trivial or noncyclic 2-Sylow subgroup, and let µ be
an action of G on H. Suppose (K, k1, k) is tamely ramified and of type µ. Let
ep be the ramification index of a prime p in k1/k and eP be the ramification
index of a prime P of k1 dividing p in K/k1. Then the class of

(
p

(epeP−1) mn
epeP

−vp(αn
k1/k

)
) 1

2

is in

Rt(k,G)n ·
∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ) .

Proof. Clearly

(epeP − 1)
mn

epeP

= (ep − 1)
mn

ep

+ (eP − 1)
mn

epeP

is divisible by

gcd

(
(ep − 1)

mn

ep

, (eP − 1)
mn

epeP

)
and, since (m,n) = 1, i.e. also (ep, eP) = 1, this coincides with

gcd

(
(ep − 1)

mn

ep

, (eP − 1)
mn

eP

)
.

Thus, recalling Lemma 2.1.6,

p
(epeP−1) mn

epeP = p
ap(ep−1)mn

ep
+aP(eP−1)mn

eP = p
ap(ep−1)mn

ep

∏
l|eP

p
bp,l(l−1) mn

eP(l) .

If G either has odd order or has a noncyclic 2-Sylow subgroup, i.e. αk1/k =
1, then we conclude by the hypothesis that G is good, by Lemma 3.1.16 and
by the fact that, for any prime l dividing eP, (l− 1) mn

eP(l)
is even (in the case

l = 2 this is due to the fact that the inertia group at P must be cyclic by
Proposition 1.3.9, while the 2-Sylow subgroup of H is not).

We now assume that G is of even order with a cyclic 2-Sylow subgroup
and thus that the order of H is odd. Again using Lemma 2.1.6 we can find
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some cp,l such that

p
(epeP−1) mn

epeP
−vp(αn

k1/k
)

= p
ap(ep−1)mn

ep
−vp(αn

k1/k
)
∏
l|eP

p
bp,l(l−1) mn

eP(l)

=
(
p

(ep−1) m
ep

(ap−1)
)n (

p
(ep−1) m

ep
−vp(αk1/k)

)n∏
l|eP

p
bp,l(l−1) mn

eP(l)

=
∏
l|ep

p
cp,l(l−1) mn

ep(l)
(ap−1)

(
p

(ep−1) m
ep
−vp(αk1/k)

)n∏
l|eP

p
bp,l(l−1) mn

eP(l) .

We know that p
(epeP−1) mn

epeP
−vp(αn

k1/k
)

and p
(ep−1) m

ep
−vp(αk1/k)

are squares of ide-
als and that any l dividing eP is odd. It follows that cp,2

mn
ep(2)

(ap− 1) is even,

since all the other exponents are. Recalling the hypothesis that G is good,
we conclude that the class of(

p
(epeP−1) mn

epeP
−vp(αn

k1/k
)
) 1

2

is in

Rt(k,G)n ·
∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ) .

Lemma 3.2.7. Under the same hypotheses as in the preceding lemma, if
l|epeP, the class of

p
(l−1) mn

ep(l)eP(l)

is in

Rt(k,G)n
∏

τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ) .

and, if 2 divides (l − 1) mn
ep(l)eP(l)

, the class of

p
l−1
2

mn
ep(l)eP(l)

is in

Rt(k,G)n
∏

τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ) .

Proof. If l is an odd prime dividing ep, then 2 divides (l − 1) m
ep(l)

and the

class of

p
l−1
2

m
ep(l)
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is in Rt(k,G), by the hypothesis that G is good. We conclude that the class
of

p
l−1
2

mn
ep(l)eP(l) = p

l−1
2

mn
ep(l)

is in Rt(k,G)n. Analogously, if 2 divides ep, the class of

p
mn

ep(2)eP(2) = p
mn
ep(2)

is in Rt(k,G)n. Further if 2 divides mn
ep(2)eP(2)

= mn
ep(2)

then also m
ep(2)

must be

even (n is prime to m and so it must be odd). As above we conclude that
the class of

p
1
2

mn
ep(2)eP(2)

is in Rt(k,G)n.
If l divides eP, then (l − 1) mn

ep(l)eP(l)
is even (by hypothesis the 2-Sylow

subgroup of H is not cyclic and thus n
eP(2)

is even). We conclude by Lemma

3.1.16 that the class of

p
l−1
2

mn
ep(l)eP(l) = p

l−1
2

mn
eP(l)

is in W (k,Ek,µ,τ )
l−1
2

mn
o(τ) for some τ ∈ H(l) \ {1}.

Now we can prove the following theorem.

Theorem 3.2.8. Let k be a number field and let G be a good group of order
m. Let H = C(n1)× · · · × C(nr) be an abelian group of odd order prime to
m and let µ be an action of G on H. Then

Rt(k,H oµ G) = Rt(k,G)n
∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ) ,

where Ek,µ,τ is the fixed field of Gk,µ,τ in k(ζo(τ)),

Gk,µ,τ =
{
g ∈ Gal(k(ζo(τ))/k) : ∃g1 ∈ G, µ(g1)(τ) = τ νk,τ (g)

}
and g(ζo(τ)) = ζ

νk,τ (g)

o(τ) for any g ∈ Gal(k(ζo(τ))/k). Furthermore G = H oµ G
is good.

Proof. Let x ∈ Rt(k,HoµG); then x is the Steinitz class of a tame extension
(K, k1, k) of type µ and it is the class of a product of elements of the form(

p
(epeP−1) mn

epeP
−vp(αn

k1/k
)
) 1

2
.
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Hence it is contained in

Rt(k,G)n ·
∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ)

by Lemma 3.2.6 and the fact that the last expression is a group. Hence

Rt(k,H oµ G) ⊆ Rt(k,G)n ·
∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ) .

The opposite inclusion is given by Proposition 3.1.14. We now show that
H oµ G is a good group.

1. The first point of the definition of good groups is clear by what we have
just proved about Rt(k,H oµ G).

2. This follows from Lemma 3.2.6, choosing αK/k = αnk1/k for any extension

(K, k1, k) of type µ.

3. This follows from Lemma 3.2.7.

4. This comes from Proposition 3.1.14.

Corollary 3.2.9. Under the hypotheses of the above theorem, if G = C(m1)×
· · · × C(mr) is abelian of odd order m, then

Rt(k,H oµ G) =
∏
l|m

W (k,m1(l))
l−1
2

mn
m1(l) ·

∏
l|n

∏
τ∈H(l)\{1}

W (k,Ek,µ,τ )
l−1
2

mn
o(τ) .

Proof. This follows by Theorem 2.1.8 and Theorem 3.2.8.

Example. We consider G = C(3) and H = C(5) × C(5) and we define
an action µ : G → Aut(H) by its image on a generator of C(3), which can
be written in form of a matrix with coefficients in Z/5Z. We choose the
following matrix

M =

(
2 3
1 2

)
.

By Corollary 3.2.9 we obtain

Rt(k, (C(5)× C(5)) oµ C(3)) = W (k, 3)25 ·
∏

τ∈H\{1}

W (k,Ek,µ,τ )
30 .
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Since any nonidentity power of the matrix M induces linear endomorphisms
of C(5) × C(5) without eigenvectors, we deduce that, for any τ , Gk,µ,τ is
trivial. Thus Ek,µ,τ = k(ζ5) and so W (k,Ek,µ,τ ) = W (k, 5). Hence

Rt(k, (C(5)× C(5)) oµ C(3)) = W (k, 3)25W (k, 5)30.

By Theorem 2.1.8 this coincides with Rt(k, (C(5)× C(5))× C(3)).
By Proposition 1.2.12, W (k, 3) = Nk(ζ3)/k(Jk(ζ3)) ·Pk/Pk and since [k(ζ3) :

k] divides 2 we obtain that Cl(k)2 ⊆ W (k, 3). Analogously Cl(k)4 ⊆ W (k, 5);
hence we have

Cl(k)10 = Cl(k)2·25Cl(k)4·30

⊆ W (k, 3)25W (k, 5)30 = Rt(k, (C(5)× C(5)) oµ C(3))

and in particular W (k, 3)10 ⊆ Rt(k, (C(5) × C(5)) oµ C(3)). Since also
W (k, 3)25 ⊆ Rt(k, (C(5)× C(5)) oµ C(3)) we can conclude that

W (k, 3)5 ⊆ Rt(k, (C(5)× C(5)) oµ C(3)).

Conversely

W (k, 3)5 ⊇ W (k, 3)25Cl(k)10 ⊇ W (k, 3)25W (k, 5)30 = Rt(k, (C(5)×C(5))oµC(3))

and so we have proved that there is a simpler way to write the realizable
classes of the group (C(5)× C(5)) oµ C(3), namely

Rt(k, (C(5)× C(5)) oµ C(3)) = W (k, 3)5.

We also observe that there are no other semidirect products of C(5)×C(5)
and C(3), up to isomorphism. This follows from the fact that any other 2×2
matrix of order 3 with coefficients in Z/5Z has x2+x+1, which is irreducible,
as its characteristic polynomial and as its minimal polynomial, and hence it
is conjugate to M .

Example. As a second example we calculate the realizable classes for
the group C(3)(3) oµ1 C(13), where the action µ1 sends a generator of C(13)
to the automorphism of C(3)(3) = C(3)×C(3)×C(3) defined by the matrix 0 0 1

1 0 1
0 1 0

 .

By Corollary 3.2.9 we obtain that

Rt(k, C(3)(3) oµ1 C(13)) = W (k, 13)6·27
∏

τ∈C(3)(3)\{1}

W (k,Ek,µ1,τ )
13·9.
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It is immediate to verify that Gk,µ1,τ = {1} for any τ ∈ C(3)(3) \ {1}. Hence

Rt(k, C(3)(3) oµ1 C(13)) = W (k, 13)6·27W (k, 3)13·9.

As in the preceding example we obtain that

Cl(k)18 = Cl(k)12·6·27Cl(k)2·13·9 ⊆ Rt(k, C(3)(3) oµ1 C(13))

and, recalling that W (k, 3)13·9 ⊆ Rt(k, C(3)(3) oµ1 C(13)), we obtain that

W (k, 3)9 ⊆ Rt(k, C(3)(3) oµ1 C(13)).

Of course we also have that

W (k, 3)9 ⊇ W (k, 13)6·27W (k, 3)13·9.

Hence
Rt(k, C(3)(3) oµ1 C(13)) = W (k, 3)9.

If H = C(n) = C(n1) is cyclic, then Theorem 3.2.8 may be written in a
simpler form. For this aim we first need the following lemmas.

Lemma 3.2.10. Let l be a prime dividing n. If H(l) is cyclic, τ ∈ H(l) and
c|o(τ), c 6= o(τ), then

Gc
k,µ,τc ⊆ Gk,µ,τ .

Proof. We define
µ̂τ : G → (Z/o(τ)Z)∗

by τ µ̂τ (g1) = µ(g1)(τ) for any g1 ∈ G. By definition if g ∈ Gk,µ,τc , then there
exists g1 ∈ G such that

τ cνk,τc (g) = µ(g1)(τ c) = τ cµ̂τc (g1)

and thus
νk,τc(g)µ̂τc(g1)−1 ≡ 1 (mod o(τ)/c).

We observe that

ζ
νk,τ (g)

o(τ)/c = ζ
cνk,τ (g)

o(τ) = g
(
ζco(τ)

)
= g

(
ζo(τ)/c

)
= g

(
ζo(τc)

)
= ζ

νk,τc (g)

o(τc) = ζ
νk,τc (g)

o(τ)/c

and that
τ cµ̂τ (g1) = µ(g1)(τ c) = τ cµ̂τc (g1),

i.e. that
νk,τ (g) ≡ νk,τc(g) (mod o(τ)/c)
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and that
µ̂τ (g1) ≡ µ̂τc(g1) (mod o(τ)/c).

Thus
νk,τ (g)µ̂τ (g1)−1 ≡ 1 (mod o(τ)/c)

and by Lemma 1.2.17 we obtain that

νk,τ (g
c)µ̂τ (g

c
1)−1 =

(
νk,τ (g)µ̂τ (g1)−1

)c ≡ 1 (mod o(τ))

i.e. that
τ νk,τ (gc) = τ µ̂τ (gc1) = µ(gc1)(τ)

and hence that gc ∈ Gk,µ,τ .

Lemma 3.2.11. Let l be a prime dividing n. If H(l) is cyclic, τ ∈ H(l) and
c|o(τ), c 6= o(τ), then

W (k,Ek,µ,τc)
c ⊆ W (k,Ek,µ,τ ).

Proof. Let x be a class in W (k,Ek,µ,τc). By Proposition 1.2.12 there exists
a prime p in the class of x splitting completely in Ek,µ,τc/k. By Theorem
1.2.6, p ∈ Hm

Ek,µ,τc/k
, where m is a cycle of declaration of Ek,µ,τc/k. Then by

Proposition 1.2.2 (
k(ζo(τ))/k

p

)∣∣∣∣
Ek,µ,τc

=

(
Ek,µ,τc/k

p

)
= 1.

Thus (
k(ζo(τ))/k

p

)
∈ Gal(k(ζo(τ))/Ek,µ,τc) = Gk,µ,τc

and it follows by Lemma 3.2.10 that(
k(ζo(τ))/k

pc

)
=

(
k(ζo(τ))/k

p

)c
∈ Gc

k,µ,τc ⊆ Gk,µ,τ = Gal(k(ζo(τ))/Ek,µ,τ ).

Then (
Ek,µ,τ/k

pc

)
=

(
k(ζo(τ))/k

pc

)∣∣∣∣
Ek,µ,τ

= 1

and so the class xc of pc is in W (k,Ek,µ,τ ).

Proposition 3.2.12. Let k be a number field and let G be a good group of
order m, let n be an odd integer coprime to m, let µ be an action of G on
C(n), let τ be a generator of C(n) and let G = C(n) oµ G, then G is good
and

Rt(k,G) = Rt(k,G)n
∏
l|n

W (k,Ek,µ,τ(l))
l−1
2

mn
n(l) .
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Proof. Any element of H(l) \ {1} is a c-th power of τ(l), for some c|n(l),
c 6= n(l). Thus, by Theorem 3.2.8,

Rt(k, C(n) oµ G) = Rt(k,G)n
∏
l|n

∏
c|n(l)
c 6=n(l)

W
(
k,Ek,µ,τ(l)c

) l−1
2

mn
n(l)

c
.

Hence, by Lemma 3.2.11,

Rt(k, C(n) oµ G) ⊆ Rt(k,G)n
∏
l|n

W
(
k,Ek,µ,τ(l)

) l−1
2

mn
n(l) .

For the opposite inclusion it is enough to consider the factors corresponding
to c = 1 in the above expression for Rt(k, C(n) oµ G). The fact that G is
good has been proved in Theorem 3.2.8.

In particular, if n is a power of a prime l and G = C(m) is cyclic of order
prime to n we obtain exactly the same result as in [9].

Example. As an example of the above result we consider the group
C(13)oµ2C(3), where the action µ2 sends a generator of C(3) to the elevation
to the cube in C(13). We explicitly calculate its realizable classes. By the
above proposition and by Theorem 2.1.8 we obtain that

Rt(k, C(13) oµ2 C(3)) = W (k, 3)13W (k,Ek,µ2,τ )
18,

where τ is a generator of C(13). Further since Cl(k)2 ⊆ W (k, 3) and
Cl(k)12 ⊆ W (k, 13) ⊆ W (k,Ek,µ2,τ ) it follows that

Cl(k)2 = Cl(k)2·13Cl(k)12·18 ⊆ Rt(k, C(13) oµ2 C(3))

and, recalling that W (k, 3)13 ⊆ Rt(k, C(13) oµ2 C(3)), we obtain that

W (k, 3) ⊆ Rt(k, C(13) oµ2 C(3)).

Recalling that Cl(k)2 ⊆ W (k, 3) we also have that

W (k, 3) ⊇ W (k, 3)13W (k,Ek,µ2,τ )
18 = Rt(k, C(13) oµ2 C(3)).

Hence
Rt(k, C(13) oµ2 C(3)) = W (k, 3).

Now we prove a result concerning direct products of good groups. We
again need two lemmas.
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Chapter 3. Nonabelian extensions

Lemma 3.2.13. Let G1 and G2 be good groups of orders m and n respectively.
Let us assume that m and n are not both even or that G1 and G2 both have
noncyclic 2-Sylow subgroups. Let K/k be a tame G1×G2-extension of number
fields, where K = k1k2 and ki/k are Gi-extensions, let ep be the ramification
index of a prime p in K/k, and let

αK/k =


αnk1/k if G1 has even order and cyclic 2-Sylow subgroups

αmk2/k if G2 has even order and cyclic 2-Sylow subgroups

1 else.

Then the class of the ideal (
p

(ep−1)mn
ep
−vp(αK/k)

) 1
2

is in

Rt(k,G1)nRt(k,G2)m.

Proof. Let p be a prime ramifying in K/k. Let (g1, g2) be a generator of its
inertia group (it is cyclic since the ramification is tame); then g1 generates
the inertia group of p in k1/k and g2 in k2/k. Let ep,i be the ramification
index of p in ki/k; then ep = lcm(ep,1, ep,2). In particular for any prime l
dividing ep, ep(l) = max{ep,1(l), ep,2(l)}.

Let us first consider the case in which the order of G1 × G2 is odd or
its 2-Sylow subgroups are not cyclic. In this case αK/k = 1 and, recalling
Lemma 2.1.6, we have

p
(ep−1)mn

ep =
∏
l|ep

p
al(l−1) mn

ep(l)

=
∏
l|ep

ep(l)=ep,1(l)

(
p
al(l−1) m

ep,1(l)

)n ∏
l|ep

ep(l)6=ep,1(l)

(
p
al(l−1) n

ep,2(l)

)m
,

where all the exponents al(l−1) m
ep,1(l)

and al(l−1) n
ep,2(l)

are clearly even. Thus,

since G1 and G2 are good, the class of p
1
2

(ep−1)mn
ep is in Rt(k,G1)nRt(k,G2)m.

Let us now assume that G1 × G2 is of even order with cyclic 2-Sylow
subgroups. Thus we may suppose that the order of G1 is even, that G1 has
cyclic 2-Sylow subgroups and that the order of G2 is odd. Then

p
(ep−1)mn

ep
−vp(αK/k)

= p
n

(
(ep,1−1) m

ep,1
−vp(αk1/k)

)
p

(ep−1)mn
ep
−(ep,1−1) mn

ep,1
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and, recalling Theorem 1.3.6, we deduce that

p
(ep−1)mn

ep
−(ep,1−1) mn

ep,1

is the square of an ideal and we have

p
(ep−1)mn

ep
−(ep,1−1) mn

ep,1

=
∏
l|ep

p
al(l−1) mn

ep(l)

∏
l|ep,1

p
−bl(l−1) mn

ep,1(l)

=
∏
l|ep

ep(l)=ep,2(l)

p
al(l−1) mn

ep,2(l)
∏
l|ep

ep(l)6=ep,2(l)

p
(al−bl)(l−1) mn

ep,1(l)
∏
l|ep,1

ep(l)=ep,2(l)

p
−bl(l−1) mn

ep,1(l) .

For odd primes l all the exponents in the above expression are even; we
deduce that this must be true also for the component corresponding to l = 2
(if 2|ep), i.e. for (a2 − b2) mn

ep,1(2)
, and hence also for (a2 − b2) m

ep,1(2)
since n is

odd.
Thus by the hypothesis that G1 and G2 are good, we easily obtain that

the class of the ideal (
p

(ep−1)mn
ep
−(ep,1−1) mn

ep,1

) 1
2

is in Rt(k,G1)nRt(k,G2)m.
Now we can conclude that the class of(
p

(ep−1)mn
ep
−vp(αK/k)

) 1
2

= p
n
2

(
(ep,1−1) m

ep,1
−vp(αk1/k)

) (
p

(ep−1)mn
ep
−(ep,1−1) mn

ep,1

) 1
2

is in Rt(k,G1)nRt(k,G2)m, since also

p
n
2

(
(ep,1−1) m

ep,1
−vp(αk1/k)

)

is in Rt(k,G1)n and both Rt(k,G1) and Rt(k,G2) are groups.

Lemma 3.2.14. Under the same hypotheses as in the preceding lemma, if
l|ep, the class of the ideal

p
(l−1) mn

ep(l)

is in Rt(k,G1)nRt(k,G2)m and, if 2 divides (l− 1) mn
ep(l)

, the class of the ideal,

p
l−1
2

mn
ep(l)

is in Rt(k,G1)nRt(k,G2)m.
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Proof. Let l|ep and let us assume that ep(l) = ep,1(l). Then

p
(l−1) mn

ep(l) =
(
p

(l−1) m
ep,1(l)

)n
and its class is in Rt(k,G1)n, by the hypothesis that G1 is good. If (l− 1) mn

ep(l)

is even then 2 divides (l− 1) m
ep(l)

(if l = 2 then this is true because 2|ep(2) =

ep,1(2)|m and thus by hypothesis n is odd or the 2-Sylow subgroup of G1 is
not cyclic, i.e. 2 divides m/ep,1(2) = m/ep(2)). Then

p
l−1
2

mn
ep(l) =

(
p
l−1
2

m
ep,1(l)

)n
is in Rt(k,G1)n by the assumption that G1 is good. The case ep(l) = ep,2(l)
is identical.

Theorem 3.2.15. Let G1 and G2 be good groups of orders m and n respec-
tively and let us assume that m and n are not both even or that G1 and G2

both have noncyclic 2-Sylow subgroups. Then

Rt(k,G1 × G2) = Rt(k,G1)nRt(k,G2)m.

Furthermore the group G1 × G2 is good.

Proof. One inclusion is quite straightforward considering the composition
of G1- and G2-extensions of k with appropriate Steinitz classes and using
Proposition 1.3.7.

The opposite inclusion follows by Lemma 3.2.13 and Theorem 1.3.6.
Now again by Lemma 3.2.13 and by Lemma 3.2.14 it follows that G1×G2

is good.

Example. As an example we calculate the realizable classes for the group

G = (C(3)(3) oµ1 C(13))× (C(13) oµ2 C(3)),

where the actions µ1 and µ2 are defined in the examples of the preceding
pages. By the above results we obtain

Rt(k,G) = Rt(k, C(3)(3) oµ1 C(13))3·13 · Rt(k, C(13) oµ2 C(3))3313

= W (k, 3)9·3·13W (k, 3)33·13 = W (k, 3)351.

At this point we obtain our most important result.
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Theorem 3.2.16. Every A′-group G of odd order is good. In particular for
any such group and any number field k, Rt(k,G) is a subgroup of the ideal
class group of k.

Proof. Inductively, by Theorem 3.2.8 and Theorem 3.2.15, since the trivial
group is obviously good.

Of course the above arguments can be used to calculate explicitly Rt(k,G)
for a given number field and a given A′-group of odd order.

We can also obtain some results for groups of even order.

Proposition 3.2.17. The cyclic groups C(2) and C(4) of order 2 and 4,
respectively, are good and all the ideal classes are realizable for them.

Proof. By Propositions 2.2.3 and 2.2.6 properties 1. and 4. of good groups
are satisfied for C(2) and C(4) and

Rt(k, C(2)) = Rt(k, C(4)) = Cl(k).

From this equality it is immediate to deduce also the second and the third
requested property.

Proposition 3.2.18. If n is odd then Dn is a good group and

Rt(k,Dn) = Cl(k)n ·
∏
l|n

W
(
k,Ek,µ,τ(l)

)(l−1) n
n(l) ,

where we write Dn as C(n) oµ C(2) and τ is a generator of C(n).

Proof. Immediate by Proposition 3.2.12 and Proposition 3.2.17.

Example. As an example of the above result we consider the group S3 =
D3. We explicitly calculate its realizable classes. By the above proposition

Rt(k, S3) = W (k,Ek,µ,τ )
2Cl(k)3.

It is clear by definition that Gk,µ,τ = Gal(k(ζ3)/k) and hence that Ek,µ,τ = k.
It follows that

Rt(k, S3) = Cl(k)2Cl(k)3 = Cl(k).
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Proposition 3.2.19. If n is an odd integer, then the generalized quaternion
group of order 4n, which is defined by

H4n = 〈σ, τ : σ2n = 1, σn = τ 2, τστ−1 = σ−1〉

is isomorphic to a semidirect product

C(n) oµ C(4).

This group is good and

Rt(k,H4n) = Cl(k)n
∏
l|n

W (k,Ek,µ,σ(l))
(l−1) n

n(l) .

Proof. The subgroup H of H4n, generated by σ2 is normal of order n and
the quotient H4n/H is cyclic of order 4. Thus we have the following exact
sequence:

1→ C(n)→ H4n → C(4)→ 1

and by Proposition 3.1.1 we conclude that

H4n
∼= C(n) oµ C(4).

Clearly σ2(l) = σ(l) for any prime l dividing n, since this is odd by hypothesis.
Therefore by Proposition 3.2.12 we conclude that H4n is a good group and
that

Rt(k,H4n) = Cl(k)n
∏
l|n

W (k,Ek,µ,σ(l))
(l−1) 2n

n(l) .

Finally, since n is odd and Cl(k)n ⊆ Rt(k,H4n), the 2 component of all the
other exponents in the above expression can be omitted. So we obtain the
desired equality.

If in the above proposition n is a power of an odd prime number l, we
obtain the result proved by James E. Carter and Bouchäıb Sodäıgui in [7].

In Proposition 2.3.2 we explicitly described the realizable classes for some
particular abelian groups of even order. In the next proposition we show that
these groups are good, so that we can use Theorem 3.2.8 and Theorem 3.2.15
to study some more groups.

Proposition 3.2.20. Let G = C(m1) × · · · × C(mr), with mi+1|mi, be an
abelian group of order m. If 2|m and m1(2) = m2(2), then G is good.
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Proof. By Proposition 2.3.2, the first and the fourth property of good groups
are verified and

Rt(k,G) =
∏
l|m

W (k,m1(l))
l−1
2

m
m1(l) .

Let K/k be a tamely ramified extension of number fields with Galois
group G. By Lemma 2.1.6 there exist bep,l ∈ Z such that

p
(ep−1) m

ep =
∏
l|ep

p
bep,l(l−1) m

ep(l) =
∏
l|ep

p
m1(l)
ep(l)

bep,l(l−1) m
m1(l) .

By Lemma 1.2.15 and Lemma 1.2.18, the class of the ideal p
m1(l)
ep(l) is contained

in W (k,m1(l)). Since (l−1) m
m1(l)

is even for any prime l dividing ep, we easily
conclude that also the second and the third property of good groups hold for
G.

Proposition 3.2.21. If n is odd then D2n is a good group, it is isomorphic
to a semidirect product of the form

C(n) oµ (C(2)× C(2))

and
Rt(k,D2n) = Cl(k)n ·

∏
l|n

W
(
k,Ek,µ,τ(l)

)(l−1) 2n
n(l) ,

where τ is a generator of C(n).

Proof. It is easy to see that

D2n
∼= Dn × C(2) ∼= C(n) oµ (C(2)× C(2)),

for a certain action µ : C(2)×C(2)→ Aut(C(n)). By the above proposition
C(2)× C(2) is good and

Rt(k, C(2)× C(2)) = Cl(k).

Thus we conclude by Proposition 3.2.12 that D2n is good and we obtain the
desired expression for Rt(k,D2n).

Proposition 3.2.22. Let k be a number field and let G be a good group of
odd order.

Let H = C(2)(n) = C(2)× · · · × C(2) and let µ be an action of G on H.
Then

Rt(k,H oµ G) = Rt(k,G)2nCl(k)m2n−2

.

Further G = H oµ G is good.
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Proof. Clearly Ek,µ,τ = k, i.e. W (k,Ek,µ,τ ) = Cl(k) for any τ ∈ H(2) = H.
Thus, by Propositions 3.1.14 and 3.1.15,

Rt(k,H oµ G) ⊇ Rt(k,G)2nCl(k)m2n−2

.

The opposite inclusion comes from Theorems 1.3.5 and 1.3.6 and from Lemma
3.2.6. So we obtain an equality and, in particular, this gives the first property
of good groups. The other properties follow now respectively from Lemma
3.2.6, from Lemma 3.2.7 and from Propositions 3.1.14 and 3.1.15.

If G is cyclic of order 2n− 1 and the representation µ is faithful, then the
above proposition is one of the results proved by Nigel P. Byott, Cornelius
Greither and Bouchäıb Sodäıgui in [4].

Example. The group A4, which is isomorphic to a semidirect product of
the form (C(2)×C(2)) oµC(3), is good by Proposition 3.2.22. We calculate
its realizable classes:

Rt(k,A4) = W (k, 3)4Cl(k)3 ⊇ Cl(k)8Cl(k)3 = Cl(k)

and hence
Rt(k,A4) = Cl(k).

This result has been obtained by Marjory Godin and Bouchäıb Sodäıgui in
[10].

3.3 Some l-groups

In this section we will consider some groups whose order is the power of an
odd prime l. We start recalling some classical results concerning l-groups.

Proposition 3.3.1. Every group G of order ln has nontrivial center.

Proof. This is Theorem I.6.5 of [13].

Lemma 3.3.2. Let G be a finite group and let H be its center. If G/H is
cyclic then it is trivial. In particular G/H does not have order l.

Proof. Let H be the center of G and let us assume that G/H is not trivial.
Then there exists τ ∈ G \ H such that its class modulo H generates G/H.
Thus any element in G is of the form στa for σ ∈ H and a ∈ N. Since τ
commutes both with σ ∈ H (by the definition of H) and with τa, it commutes
with any element στa. Hence τ is in the center; contradiction.
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Proposition 3.3.3. Every group G of order l2 is abelian.

Proof. Let H be the center of G. By Proposition 3.3.1 the order of H is not
1, by Lemma 3.3.2 it is not l, hence it must be l2.

Up to isomorphism there are two nonabelian groups of order l3. We will
describe them and then try to obtain information about the corresponding
realizable Steinitz classes.

Proposition 3.3.4. Up to isomorphism, there are two nonabelian groups of
order l3, where l is a prime:

1. (C(l)× C(l)) oµ1 C(l), where µ1 sends a generator of C(l) to the map
defined by the matrix (

1 1
0 1

)
;

2. C(l2) oµ2 C(l), where µ2 sends a generator of C(l) to the elevation to
the l + 1-th power.

Proof. Let G be a nonabelian group of order l3 and let H be its center.
By Proposition 3.3.1 and Lemma 3.3.2, the order of H must be l and G/H
must be isomorphic to C(l) × C(l). Let x, y ∈ G be such that xH, yH
generate G/H, i.e. such that any element of G is of the form xaybσ, where
a, b ∈ {0, 1, . . . , l − 1} and σ ∈ H. Since G/H is abelian, we know that
(xy)−1yxH = y−1Hx−1HyHxH = H, i.e. that (xy)−1yx = γ ∈ H and
yx = xyγ. If x and y commute then, as in the proof of Lemma 3.3.2, they
must be in the center of G, which is a contradiction. Hence they do not
commute and, in particular, γ is nontrivial and therefore it is a generator of
H. We also know that xl, yl ∈ H.

If xl = yl = 1, then G must be a quotient of the group

〈x, y, γ : xl = yl = γl = 1, γx = xγ, γy = yγ, yx = xyγ〉.

This group is isomorphic to

(C(l)× C(l)) oµ1 C(l)

and thus it is of order l3 and it must coincide with G.
It remains to consider the case in which xl 6= 1 or yl 6= 1; we assume

the first of these possibilities (the other case is analogous). Then clearly xl

generates H and we can find an integer a such that xal = y−l. We easily
prove by induction on n that

(xay)n = xanynγan(n−1)/2
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and in particular we obtain that (xay)l = 1. Further, xH and xayH continue
to generate G/H. Thus we can assume that yl = 1. Let b ∈ {1, . . . , l − 1}
be such that xl = γb; then ybx = xybγb = xybxl. Setting τ = x, σ = yb

we obtain the relations τ l
2

= σl = 1 and, since τ l is in the center of G,
στ = τστ l = τ l+1σ, i.e. στσ−1 = τ l+1.

Hence G must be a quotient of the group

G = 〈σ, τ : σl = τ l
2

= 1, στσ−1 = τ l+1〉.

This group is isomorphic to

C(l2) oµ2 C(l)

and thus it is of order l3 and it must coincide with G.

We start studying Rt(k, (C(l)× C(l)) oµ1 C(l)) for any number field k.

Proposition 3.3.5. We have

Rt(k, (C(l)× C(l)) oµ1 C(l)) ⊆ Cl(k)
l−1
2
l2 .

Proof. Let (K, k1, k) be a tame µ1-extension of number fields. By Proposition
1.3.9 the inertia group corresponding to a ramifying prime is cyclic, generated
by an element of the form xaybσc of

G = 〈x, y, σ : xl = yl = σl = 1, σx = xσ, σy = yσ, yx = xyσ〉.

By induction we obtain

(xaybσc)n = xanybnσcn+abn(n−1)/2

and thus any nontrivial element in G is of order l. Hence the ramification
index of a ramifying prime must be equal to l, i.e.

d(K/k) =
∏

p: ep 6=1

p(l−1)l2

and we can conclude.

Unfortunately the exact sequence

1→ C(l)× C(l)→ G→ C(l)→ 1

does not imply that the group G is isomorphic to (C(l)×C(l))oµ1C(l), even
if we assume to know the action of C(l) on C(l)×C(l). This means that we
can not use Proposition 3.1.14 to construct extensions with a given Steinitz
class and we can not prove that the inclusion in the above proposition is in
fact an equality, as has been indeed proved by Clement Bruce in [2] in 2009.

As far as the group C(l2) oµ2 C(l) is concerned, we are going to consider
a more general situation.
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Lemma 3.3.6. Let l be an odd prime. The group G = C(ln) oµ C(l), with
n ≥ 2, where µ sends a generator of C(l) to the elevation to the ln−1 + 1-th
power, is identified by the exact sequence

1→ C(ln)→ G→ C(l)→ 1

if the action of C(l) on C(ln) is given by µ.

Proof. Let G be the group written in the above exact sequence, let H be a
subgroup of G isomorphic to C(ln) and generated by τ ; let x ∈ G be such
that its class modulo H generates G/H, which is cyclic of order l, and such
that xτx−1 = τ l

n−1+1, i.e. xτ = τ l
n−1+1x. Then xl = τa for some a ∈ N.

Since G is of order ln+1 and it is not cyclic, the order of x must divide ln and
so

τal
n−1

= xl
n

= 1,

i.e. l divides a and there exists b ∈ N such that a = bl. By induction we
prove that, for m ≥ 1,

(τ−bx)m = τ−bm−bl
n−1(m−1)m/2xm.

This is obvious for m = 1; we have to prove the inductive step:

(τ−bx)m = τ−b(m−1)−bln−1(m−2)(m−1)/2xm−1τ−bx

= τ−b(m−1)−bln−1(m−2)(m−1)/2xm−1τ−bx−(m−1)xm

= τ−b(m−1)−bln−1(m−2)(m−1)/2τ−b(1+ln−1)m−1

xm

= τ−b(m−1)−bln−1(m−2)(m−1)/2−b−b(m−1)ln−1

xm

= τ−bm−bl
n−1(m−1)m/2xm.

Then calling σ = τ−bx, we obtain that

σl = (τ−bx)l = τ−blxl = τ−a+a = 1.

Further
στσ−1 = τ−bxτx−1τ b = τ−bτ l

n−1+1τ b = τ l
n−1+1

and σ, τ are generators of G. Thus G must be a quotient of the group

〈σ, τ : σl = τ l
n

= 1, στσ−1 = τ l
n−1+1〉.

But this group has the same order of G and thus they must be equal.

It follows that we can use Proposition 3.1.14 to study Rt(k, C(ln)oµC(l)),
for any number field k.
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Lemma 3.3.7. Let τ be a generator of C(ln) in C(ln)oµC(l). Then Ek,µ,τ =
k(ζln−1).

Proof. By definition Ek,µ,τ is the fixed field in k(ζln) of

Gk,µ,τ =
{
g ∈ Gal(k(ζln)/k) : ∃g1 ∈ C(l) µ(g1)(τ) = τ νk,τ (g)

}
=
{
g ∈ Gal(k(ζln)/k) : ∃a ∈ N τal

n−1+1 = τ νk,τ (g)
}

=
{
g ∈ Gal(k(ζln)/k) : νk,τ (g) ≡ 1 (mod ln−1)

}
= {g ∈ Gal(k(ζln)/k) : g(ζln−1) = ζln−1} = Gal(k(ζln)/k(ζln−1)).

Hence Ek,µ,τ = k(ζln−1).

Lemma 3.3.8. We have

Rt(k, C(ln) oµ C(l)) ⊇ W (k, ln−1)
l−1
2
l.

Further we can choose G-extensions with a given Steinitz class so that
they satisfy the additional condition of Proposition 3.1.14.

Proof. By Proposition 3.1.14 and Lemma 3.3.6,

Rt(k, C(ln) oµ C(l)) ⊇ Rt(k, C(l))l
n ·W (k,Ek,µ,τ )

l−1
2
l ,

where τ is a generator of C(ln). We easily conclude since 1 ∈ Rt(k, C(l))
and, by Lemma 3.3.7, Ek,µ,τ = k(ζln−1), i.e.

W (k,Ek,µ,τ ) = W (k, ln−1).

Now we consider the opposite inclusion.

Lemma 3.3.9. Let K/k be a tame C(ln) oµ C(l)-extension of number fields
and let p be a ramifying prime, with ramification index ep. Then the class of

p
ep−1

2
ln+1

ep

and the class of

p
l−1
2

ln+1

ep

are both in
W (k, ln−1)

l−1
2
l.
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Proof. The Galois group of K/k is C(ln) oµ C(l), i.e.

G = 〈σ, τ : σl = τ l
n

= 1, στσ−1 = τ l
n−1+1〉.

By Proposition 1.3.9 the inertia group at p is cyclic, generated by an
element τaσb; by induction we obtain

(τaσb)m = τam+abln−1(m−1)m/2σbm.

The order ep of τaσb must be a multiple of l, since the element τaσb is
nontrivial and G is an l-group. Hence, recalling that τ l

n
= 1, we obtain that

ep is the smallest positive integer such that

τaepσbep = 1.

First of all we assume that l2 divides ep. If lβ is the exact power of l dividing
a, we obtain that ep = ln−β and in particular that β ≤ n− 2. So we have

σ∗(τ
aσb) = στaσbσ−1 = τa(ln−1+1)σb = (τaσb)l

n−1+1

and
τ∗(τ

aσb) = ττaσbτ−1 = τa−bl
n−1

σb = (τaσb)−ãbl
n−1−β+1,

where aã ≡ lβ (mod ln). Hence, in particular, the inertia group is a normal
subgroup of G. Thus we can decompose our extension in K/k1 and k1/k
which are both Galois and such that p is totally ramified in K/k1 and un-
ramified in k1/k. By Lemma 3.1.16 the class of p is in W (k,Ek,ρ,τaσb), where
the action ρ is induced by the conjugation in G and, in particular, it sends
τ to the elevation to the −ãbln−1−β + 1-th power, as seen above, and σ to
the elevation to the ln−1 + 1-th power. The group Gk,ρ,τaσb consists of those
elements g of Gal(k(ζln−β)/k) such that νk,τaσb(g) is congruent to a product
of powers of ln−1 + 1 and −ãbln−1−β + 1 modulo ln−β. But all these are
congruent to 1 modulo ln−1−β and thus Gk,ρ,τaσb|k(ζ

ln−1−β ) = {1}. Hence

Ek,ρ,τaσb ⊇ k(ζln−1−β) ⊇ k
(
ζ ep
l

)
i.e.

W (k,Ek,ρ,τaσb) ⊆ W
(
k,
ep

l

)
.

Hence, by the assumption that l2|ep, the class of

p
l−1
2

ln+1

ep
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is in

W
(
k,
ep

l

) l−1
2

ln+1

ep ⊆ W
(
k, ln−1

) l−1
2
l

and the same is true for

p
ep−1

2
ln+1

ep .

It remains to consider the case ep = l. We now define k1 as the fixed
field of τ and we first assume that p ramifies in K/k1. Then its iner-
tia group in Gal(K/k1) = C(ln) is of order l and thus must be generated
by τ l

n−1
. Hence by Lemma 3.1.16 the class of p is in W (k,Ek,µ,τ ln−1 ) and

p
(l−1) l

n+1

ep is the square of an ideal in W (k,Ek,µ,τ ln−1 )
l−1
2
ln , which is contained

in W (k,Ek,µ,τ )
l−1
2
l by Lemma 3.2.11. Hence, by Lemma 3.3.7, the class of

p
l−1
2

ln+1

ep = p
ep−1

2
ln+1

ep

is in
W (k, ln−1)

l−1
2
l.

Finally let us consider the case of p ramified in k1/k. By Lemma 1.2.15
the class of p is in W (k, l). Hence the class of

p
l−1
2

ln+1

ep = p
ep−1

2
ln+1

ep

is in
W (k, l)

l−1
2
ln .

By Lemma 1.2.18

W (k, l)
l−1
2
ln ⊆ W (k, ln−1)

l−1
2
l2 ⊆ W (k, ln−1)

l−1
2
l.

Theorem 3.3.10. We have

Rt(k, C(ln) oµ C(l)) = W (k, ln−1)
l−1
2
l.

Further the group C(ln) oµ C(l) is good.

Proof. By Theorems 1.3.5 and 1.3.6, by Lemma 3.3.8 and Lemma 3.3.9 it is
immediate that

Rt(k, C(ln) oµ C(l)) = W (k, ln−1)
l−1
2
l.

The prove that C(ln) oµ C(l) is good is now straightforward using the same
results.
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3.4 Some more groups

In this section we study the realizable classes for some groups, which are not
included in the families considered in the previous sections.

We start with a proposition concerning the realizable classes for D4-
extensions of a number field.

Proposition 3.4.1. Let k be a number field, then Rt(k,D4) ⊇ Cl(k)2. As a
particular case we obtain a result proved by Bouchäıb Sodäıgui in [23]: if the
class number of k is odd then Rt(k,D4) = Cl(k).

Proof. By definition

D4 = 〈τ, σ : τ 4 = σ2 = 1, στσ = τ 3〉.

The subgroup generated by τ 2 and σ is normal in D4, it is isomorphic to
C(2) × C(2) and it has trivial intersection with the subgroup generated by
τσ, which is cyclic of order 2. Further τ 2, σ and τσ generate the whole group
D4. It follows that

D4
∼= (C(2)× C(2)) oµ C(2),

where the action µ is defined by the matrix(
1 0
1 1

)
,

by an easy calculation. In particular, we have the following exact sequence:

1→ C(2)× C(2)→ D4 → C(2)→ 1.

This exact sequence identifies the group D4, since the only other nonabelian
group of order 8, i.e. Q8, does not have subgroups isomorphic to C(2)×C(2).
Hence, recalling that W (k, 2) = Cl(k), by Proposition 3.1.15 we obtain that

Cl(k)2 = Cl(k)
2·4
2·2 ⊆ Rt(k,D4).

The second group we are going to consider is S4.

Proposition 3.4.2. Let k be a number field, then Rt(k, S4) ⊇ Cl(k)2. As
a particular case we obtain a result proved by Marjory Godin and Bouchäıb
Sodäıgui in [11]: if the class number of k is odd then Rt(k, S4) = Cl(k).
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Proof. The subgroup H of S4 generated by (12)(34) and (13)(24) is normal
in S4 and the quotient G/H is generated by (124)H and by (14)H and so it
is isomorphic to S3. Hence we have the following exact sequence:

1→ C(2)× C(2)→ S4 → S3 → 1.

The 2-Sylow subgroup D4 of S4 is identified by the above sequence, by the
same arguments seen in the proof of Proposition 3.4.1. The only groups of
order 24 with 2-Sylow subgroups isomorphic to D4 are: S4, D12, C(3)×D4

and (C(6)×C(2))oC(2). So let G be a group such that we have the following
exact sequence

1→ C(2)× C(2)→ G→ S3 → 1

and that the action of S3 on C(2)×C(2) is the same as in S4. The group G
cannot be D12, since this has no normal subgroups isomorphic to C(2)×C(2),
and it is also different from C(3) × D4, since in this group the elements of
order 3 commute with everything else (while (124)(12)(34) 6= (12)(34)(124),
for example). To conclude we see that any element of order 3 in (C(6) ×
C(2))oC(2) commutes with the elements of any normal subgroup isomorphic
to C(2)× C(2). Hence G must be isomorphic to S4.

Therefore, recalling that W (k, 2) = Cl(k), by Proposition 3.1.14, by
Proposition 3.1.15 and by the example following Proposition 3.2.18 we obtain
that

Cl(k)2 = Cl(k)4Cl(k)6 = Rt(k, S3)4W (k, 2)
6·4
2·2 ⊆ Rt(k, S4).

Now we are going to consider the group G = A4×S3. This is an A′-group
of even order and it is a direct products of two good groups, but we cannot
conclude that G is good using Theorem 3.2.15, since A4 and S3 both have
even order and S3 has cyclic 2-Sylow subgroups.

Proposition 3.4.3. Let k be a number field, then Rt(k,A4 × S3) = Cl(k)6.
Further G = A4 × S3 is a good group.

Proof. First of all we calculate Rt(k,G), proving both the requested inclu-
sions.

⊇ As we have seen in the example after Proposition 3.2.22, A4 is good
and

Rt(k,A4) = Cl(k).

By Proposition 3.2.18 we know that S3 = D3 is good and thus in partic-
ular that 1 ∈ Rt(k, S3), since this must be a group. Hence considering
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compositions of disjoint A4− and S3−extensions of k and using Propo-
sition 1.3.7 we obtain that

Rt(k,A4 × S3) ⊇ Rt(k,A4)6Rt(k, S3)12 ⊇ Cl(k)6.

⊆ Let K/k be a tame number fields extension with Galois group A4×S3.

By Proposition 1.3.9, the ramification index at a prime p, ramifying in
the extension K/k must divide 6. Hence the class of

p
1
2

(ep−1) 72
ep

is in Cl(k)6 and so, by Theorems 1.3.5 and 1.3.6, the same is true also
for the Steinitz class of K/k.

So we have proved that Rt(k,A4×S3) = Cl(k)6. It is now straightforward to
verify that the conditions of the definition of good groups are all satisfied.

We are now going to study the group G = (C(4)×C(4)) oµ C(3), where
µ sends a generator of C(3) to the map defined by the matrix(

1 1
1 2

)
.

In other words,

G = 〈x, y, σ : x4 = y4 = σ3 = 1, σxσ−1 = xy, σyσ−1 = xy2, yx = xy〉.

Proposition 3.4.4. Let k be a number field, then

Rt(k, (C(4)× C(4)) oµ C(3)) = W (k, 4)2.

Further G = (C(4)× C(4)) oµ C(3) is a good group.

Proof. First of all we prove the equality concerning the realizable classes
Rt(k, (C(4)× C(4)) oµ C(3)).

⊇ By Proposition 1.2.12 and by Theorem 2.1.8,

W (k, 4)2 ⊆ Cl(k)2 ⊆ W (k, 3) = Rt(k, C(3)).

Hence by Propositions 3.1.14 and 3.1.15 we obtain that

Rt(k, (C(4)× C(4)) oµ C(3)) ⊇ Rt(k, C(3))16W (k, 4)6

⊇ W (k, 4)32W (k, 4)6 = W (k, 4)2.
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⊆ We observe that Ek,µ,τ = k(ζ4), for any τ ∈ C(4) × C(4) of order 4.
Thus, with the notation of Lemma 3.2.6, if eP = 4 then, by Lemma
3.1.16, the class of

p
1
2

(epeP−1) 48
epeP = p

(4ep−1) 6
ep

is in
W (k,Ek,µ,τ )

2 = W (k, 4)2.

If eP|2, then the class of

p
1
2

(epeP−1) 48
epeP

is in
Cl(k)4 ⊆ W (k, 4)2.

This proves the equality. At this point it is straightforward to prove that G
is a good group.

Proposition 3.4.5. Let k be a number field, then

Rt(k, (C(4)× C(4)) oµ C(3)× C(2)) = W (k, 4)4

and
Rt(k, (C(4)× C(4)) oµ C(3)× C(4)) = W (k, 4)8.

Further G1 = (C(4) × C(4)) oµ C(3) × C(2) and G2 = (C(4) × C(4)) oµ

C(3)× C(4) are good groups.

Proof. To prove one inclusion we compose extensions with Galois group G =
(C(4)×C(4))oµC(3) with arithmetically disjoint C(2)- and C(4)-extensions
with trivial Steinitz classes.

Now let us prove the opposite inclusion for the group G1. Let p be a prime
ramifying in a tame number fields extension K/k with Galois group G1. As
in Lemma 3.2.13 we call k1 and k2 subextensions of K/k with Galois groups
G and C(2) respectively and such that K = k1k2. Further let ep,i be the
ramification index of p in ki/k and ep = lcm(ep,1, ep,2) the ramification index
in K/k. In particular for any prime l dividing ep, ep(l) = max{ep,1(l), ep,2(l)}.

Recalling Lemma 2.1.6, we have

p
(ep−1) 96

ep =
∏
l|ep

p
al(l−1) 96

ep(l)

=
∏
l|ep

ep(l)=ep,1(l)

(
p
al(l−1) 48

ep,1(l)

)2 ∏
l|ep

ep(l)6=ep,1(l)

(
p
al(l−1) 2

ep,2(l)

)48

,
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where all the exponents al(l− 1) 48
ep,1(l)

are even (by Proposition 1.3.9). Thus,

recalling that G is good, the class of

p
1
2

(ep−1) 96
ep

is in
Rt(k,G)2Cl(k)24 = W (k, 4)4Cl(k)24 = W (k, 4)4.

In the case of the group G2 we can follow the same ideas, obtaining

p
(ep−1) 192

ep =
∏
l|ep

ep(l)=ep,1(l)

(
p
al(l−1) 48

ep,1(l)

)4 ∏
l|ep

ep(l)6=ep,1(l)

(
p
al(l−1) 4

ep,2(l)

)48

,

and so, recalling also Lemma 1.2.15 and Lemma 1.2.18, that the class of

p
1
2

(ep−1) 192
ep

is in
Rt(k,G)4W (k, 4)24 = W (k, 4)8W (k, 4)24 = W (k, 4)8.

At this point there is no difficulty in proving that G1 and G2 are good.
This proposition could also have been proved directly, without using the

result for Rt(k,G), exactly with the same arguments of Proposition 3.4.4, i.e.
writing G1 and G2 as follows:

G1 = (C(4)× C(4)× C(2)) oµ1 C(3)

G1 = (C(4)× C(4)× C(4)) oµ2 C(3),

where the actions µ1 and µ2 are defined in the obvious way.
On the contrary we remark that we could not simply use Theorem 3.2.15,

since G is of even order and C(2) (respectively C(4)) have cyclic 2-Sylow
subgroups.

Of course we have proved that the above groups are good and thus we can
use Theorem 3.2.8 and Theorem 3.2.15 to prove that a lot of other groups
obtained by the above ones with direct and semidirect products are good, and
hence in particular satisfy the conjecture about realizable Steinitz classes.

We will now generalize the result of Lemma 3.3.8 to a slightly more general
situation. We consider groups of the form C(ln) oµ C(ld), where d divides
l − 1 and µ sends a generator of C(ld) to an automorphism of order ld of
C(ln).

First of all we need a generalization of Lemma 3.3.6.
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Lemma 3.4.6. The group C(ln) oµ C(ld) is identified by the exact sequence

1→ C(ln)→ G→ C(ld)→ 1

if the action of C(ld) on C(ln) is given by µ.

Proof. Let G be the group written in the above exact sequence. Let x̃ and
ỹ be elements of order l and d in C(ld); let x and y be elements of G in the
counterimages of x̃ and ỹ by the projection G→ C(ld). Let σ be a generator
of C(ln) ⊆ G and let H1 be the subgroup of G generated by σ and x. We
have the following exact sequence

1→ C(ln)→ H1 → C(l)→ 1,

where the induced action is the same as in C(ln) oµ C(l). Thus by Lemma
3.3.6

H1
∼= C(ln) o C(l)

and it is clear that H1 is normal in G. Further we can assume that the order
of y is exactly d (if this is not true, we can simply redefine y as yl

n
), i.e.

that y generates a cyclic subgroup H2 of G of order d. By construction any
element of G may be uniquely written as a product of an element of H1 and
one of H2. It follows that

G ∼= H1 oH2
∼= (C(ln) o C(l)) o C(d).

At this point we easily conclude that

G ∼= C(ln) oµ C(ld).

Proposition 3.4.7. We have

Rt(k, C(ln) oµ C(ld)) ⊇ Rt(k, C(d))l
n+1

W (k,Ek,µ,σ)
l−1
2
ld ,

where σ is a generator of the C(ln)-normal subgroup of C(ln) oµ C(ld).

Proof. By Corollary 2.3.8, Proposition 3.1.14 and Lemma 3.4.6,

Rt(k, C(ln) oµ C(ld)) ⊇ Rt(k, C(ld))l
n

W (k,Ek,µ,σ)
l−1
2
ld

⊇ Rt(k, C(d))l
n+1

Rt(k, C(l))l
ndW (k,Ek,µ,σ)

l−1
2
ld

⊇ Rt(k, C(d))l
n+1

W (k,Ek,µ,σ)
l−1
2
ld .
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3.4. Some more groups

As a particular case of the above situation we consider the group G =
C(9) oµ C(6).

Proposition 3.4.8. Let k be a number field, then

Rt(k, C(9) oµ C(6)) = Cl(k)3.

Further G = C(9) oµ C(6) is a good group.

Proof. Since there are no cyclic subgroups of G of order 27, a prime ramifying
in a tame G-extension of k, must have ramification index dividing 18. Thus
every prime ideal dividing the discriminant appears with a power which is
multiple of 3 and hence the square of the Steinitz class is in Cl(k)3 and the
same must be true for the Steinitz class itself.

For the opposite inclusion we use Lemma 3.4.7 and Proposition 3.2.17,
observing that Ek,µ,σ = k, i.e. that W (k,Ek,µ,σ) = Cl(k).

The proof of the properties of good groups is now straightforward.
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